Gang Zhi, Zhanwei Hu, Gaojie Zhou, Zhuangfei Zhang, Hui Wang, Dezhi Kong, Tingting Xu, Xinjian Li and Ye Wang
{"title":"亲钠金-金刚石-聚丙烯分离器实现无枝晶钠金属电池","authors":"Gang Zhi, Zhanwei Hu, Gaojie Zhou, Zhuangfei Zhang, Hui Wang, Dezhi Kong, Tingting Xu, Xinjian Li and Ye Wang","doi":"10.1039/D5NR00743G","DOIUrl":null,"url":null,"abstract":"<p >Sodium metal is considered a promising anode material for sodium metal batteries (SMBs) owing to its high theoretical specific capacity and low electrochemical potential. Nevertheless, its practical application is hindered by the challenge of dendrite formation. To address this issue, a separator modification strategy was adapted to enhance the performance of sodium metal anodes (SMAs) using Au nanoparticle-decorated two-dimensional diamane on a commercial polypropylene substrate (Au-diamane/PP) separator. The sodiophilic Au-diamane/PP separator facilitates improved Na<small><sup>+</sup></small> ion diffusion kinetics and induces a dendrite-free deposition morphology, effectively suppressing dendrite growth. The dendrite-free deposition behavior was systematically characterized using <em>in situ</em> optical microscopy and <em>ex situ</em> scanning electron microscopy. The symmetric Na||Na cell incorporating the Au-diamane/PP separator exhibits exceptional cycling stability, maintaining operation for more than 2100 h at 2 mA cm<small><sup>−2</sup></small> with 1 mA h cm<small><sup>−2</sup></small>. The sodiophilicity originates from the <em>in situ</em> formed AuNa<small><sub>2</sub></small> alloy formed on the surface of diamane during the discharging process. Additionally, a full cell with a Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>@C cathode, Au-diamane/PP separator, and Na metal anode delivers a high reversible capacity of 88.4 mA h g<small><sup>−1</sup></small> even after more than 300 cycles. Our work underscores the potential of the Au-diamane/PP separator in advancing the development of SMBs with extended cycle life and enhanced performance.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 18","pages":" 11752-11761"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodiophilic Au-diamane polypropylene separator enabled dendrite-free sodium metal batteries†\",\"authors\":\"Gang Zhi, Zhanwei Hu, Gaojie Zhou, Zhuangfei Zhang, Hui Wang, Dezhi Kong, Tingting Xu, Xinjian Li and Ye Wang\",\"doi\":\"10.1039/D5NR00743G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sodium metal is considered a promising anode material for sodium metal batteries (SMBs) owing to its high theoretical specific capacity and low electrochemical potential. Nevertheless, its practical application is hindered by the challenge of dendrite formation. To address this issue, a separator modification strategy was adapted to enhance the performance of sodium metal anodes (SMAs) using Au nanoparticle-decorated two-dimensional diamane on a commercial polypropylene substrate (Au-diamane/PP) separator. The sodiophilic Au-diamane/PP separator facilitates improved Na<small><sup>+</sup></small> ion diffusion kinetics and induces a dendrite-free deposition morphology, effectively suppressing dendrite growth. The dendrite-free deposition behavior was systematically characterized using <em>in situ</em> optical microscopy and <em>ex situ</em> scanning electron microscopy. The symmetric Na||Na cell incorporating the Au-diamane/PP separator exhibits exceptional cycling stability, maintaining operation for more than 2100 h at 2 mA cm<small><sup>−2</sup></small> with 1 mA h cm<small><sup>−2</sup></small>. The sodiophilicity originates from the <em>in situ</em> formed AuNa<small><sub>2</sub></small> alloy formed on the surface of diamane during the discharging process. Additionally, a full cell with a Na<small><sub>3</sub></small>V<small><sub>2</sub></small>(PO<small><sub>4</sub></small>)<small><sub>3</sub></small>@C cathode, Au-diamane/PP separator, and Na metal anode delivers a high reversible capacity of 88.4 mA h g<small><sup>−1</sup></small> even after more than 300 cycles. Our work underscores the potential of the Au-diamane/PP separator in advancing the development of SMBs with extended cycle life and enhanced performance.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 18\",\"pages\":\" 11752-11761\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00743g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr00743g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
金属钠因其较高的理论比容量和较低的电化学电位而被认为是一种很有前途的钠金属电池负极材料。然而,它的实际应用受到树突形成挑战的阻碍。为了解决这一问题,采用了一种分离器改性策略,通过在商用聚丙烯基(Au-diamane/PP)分离器上使用金纳米粒子修饰的二维金刚石来提高金属钠阳极(sma)的性能。亲钠性Au-diamane/PP分离器有利于改善Na +离子扩散动力学,诱导无枝晶沉积形态,有效抑制枝晶生长。采用原位光学显微镜和非原位扫描电镜对无枝晶沉积行为进行了系统表征。含有Au-diamane/PP分离器的Na电池具有出色的循环稳定性,在2 mA cm-2和1 mAh cm-2下保持运行超过2100小时。其亲钠性来源于放电过程中金刚石表面形成的原位形成的AuNa2合金。此外,具有Na3V2(PO4)3@C阴极,Au-diamane/PP分离器和Na金属阳极的完整电池配置可提供88.4 mAh g-1的高可逆容量,超过300次循环。我们的工作强调了金diamane/PP分离器在推动smb开发方面的潜力,该分离器具有延长循环寿命和增强性能的潜力。
Sodiophilic Au-diamane polypropylene separator enabled dendrite-free sodium metal batteries†
Sodium metal is considered a promising anode material for sodium metal batteries (SMBs) owing to its high theoretical specific capacity and low electrochemical potential. Nevertheless, its practical application is hindered by the challenge of dendrite formation. To address this issue, a separator modification strategy was adapted to enhance the performance of sodium metal anodes (SMAs) using Au nanoparticle-decorated two-dimensional diamane on a commercial polypropylene substrate (Au-diamane/PP) separator. The sodiophilic Au-diamane/PP separator facilitates improved Na+ ion diffusion kinetics and induces a dendrite-free deposition morphology, effectively suppressing dendrite growth. The dendrite-free deposition behavior was systematically characterized using in situ optical microscopy and ex situ scanning electron microscopy. The symmetric Na||Na cell incorporating the Au-diamane/PP separator exhibits exceptional cycling stability, maintaining operation for more than 2100 h at 2 mA cm−2 with 1 mA h cm−2. The sodiophilicity originates from the in situ formed AuNa2 alloy formed on the surface of diamane during the discharging process. Additionally, a full cell with a Na3V2(PO4)3@C cathode, Au-diamane/PP separator, and Na metal anode delivers a high reversible capacity of 88.4 mA h g−1 even after more than 300 cycles. Our work underscores the potential of the Au-diamane/PP separator in advancing the development of SMBs with extended cycle life and enhanced performance.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.