{"title":"基于钙钛矿的神经形态计算设备的研究进展","authors":"Yixin Cao, Yuanxi Li, Ganggui Zhu, Linhui Li, Guohua Lu, Enggee Lim, Wenqing Liu, Yina Liu, Chun Zhao, Zhen Wen","doi":"10.1039/d5nr00335k","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing devices, inspired by the architecture and functionality of the human brain, offer a promising solution to the limitations imposed by the von Neumann bottleneck on contemporary computing systems. Perovskite materials are widely used in the photosensitive layer of neuromorphic computing devices due to their high light absorption coefficient, excellent carrier mobility. Here, we summarise the latest research progress on neural morphology computing devices based on perovskite materials with different structures and summarise different application scenarios. Finally, we discussed the issues that still need to be addressed and looked forward to the future development of neural morphology calculations based on perovskite materials.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"25 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Perovskite-Based Neuromorphic Computing Devices\",\"authors\":\"Yixin Cao, Yuanxi Li, Ganggui Zhu, Linhui Li, Guohua Lu, Enggee Lim, Wenqing Liu, Yina Liu, Chun Zhao, Zhen Wen\",\"doi\":\"10.1039/d5nr00335k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing devices, inspired by the architecture and functionality of the human brain, offer a promising solution to the limitations imposed by the von Neumann bottleneck on contemporary computing systems. Perovskite materials are widely used in the photosensitive layer of neuromorphic computing devices due to their high light absorption coefficient, excellent carrier mobility. Here, we summarise the latest research progress on neural morphology computing devices based on perovskite materials with different structures and summarise different application scenarios. Finally, we discussed the issues that still need to be addressed and looked forward to the future development of neural morphology calculations based on perovskite materials.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr00335k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00335k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in Perovskite-Based Neuromorphic Computing Devices
Neuromorphic computing devices, inspired by the architecture and functionality of the human brain, offer a promising solution to the limitations imposed by the von Neumann bottleneck on contemporary computing systems. Perovskite materials are widely used in the photosensitive layer of neuromorphic computing devices due to their high light absorption coefficient, excellent carrier mobility. Here, we summarise the latest research progress on neural morphology computing devices based on perovskite materials with different structures and summarise different application scenarios. Finally, we discussed the issues that still need to be addressed and looked forward to the future development of neural morphology calculations based on perovskite materials.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.