Kimitoshi Kimura, Ayshwarya Subramanian, Zhuoran Yin, Ahad Khalilnezhad, Yufan Wu, Danyang He, Karen O. Dixon, Udbhav Kasyap Chitta, Xiaokai Ding, Niraj Adhikari, Isabell Guzchenko, Xiaoming Zhang, Ruihan Tang, Thomas Pertel, Samuel A. Myers, Aastha Aastha, Masashi Nomura, Ghazaleh Eskandari-Sedighi, Vasundhara Singh, Lei Liu, Conner Lambden, Kilian L. Kleemann, Neha Gupta, Jen-Li Barry, Ana Durao, Yiran Cheng, Sebastian Silveira, Huiyuan Zhang, Aamir Suhail, Toni Delorey, Orit Rozenblatt-Rosen, Gordon J. Freeman, Dennis J. Selkoe, Howard L. Weiner, Mathew Blurton-Jones, Carlos Cruchaga, Aviv Regev, Mario L. Suvà, Oleg Butovsky, Vijay K. Kuchroo
{"title":"免疫检查点TIM-3调节小胶质细胞和阿尔茨海默病","authors":"Kimitoshi Kimura, Ayshwarya Subramanian, Zhuoran Yin, Ahad Khalilnezhad, Yufan Wu, Danyang He, Karen O. Dixon, Udbhav Kasyap Chitta, Xiaokai Ding, Niraj Adhikari, Isabell Guzchenko, Xiaoming Zhang, Ruihan Tang, Thomas Pertel, Samuel A. Myers, Aastha Aastha, Masashi Nomura, Ghazaleh Eskandari-Sedighi, Vasundhara Singh, Lei Liu, Conner Lambden, Kilian L. Kleemann, Neha Gupta, Jen-Li Barry, Ana Durao, Yiran Cheng, Sebastian Silveira, Huiyuan Zhang, Aamir Suhail, Toni Delorey, Orit Rozenblatt-Rosen, Gordon J. Freeman, Dennis J. Selkoe, Howard L. Weiner, Mathew Blurton-Jones, Carlos Cruchaga, Aviv Regev, Mario L. Suvà, Oleg Butovsky, Vijay K. Kuchroo","doi":"10.1038/s41586-025-08852-z","DOIUrl":null,"url":null,"abstract":"<p>Microglia are the resident immune cells in the brain and have pivotal roles in neurodevelopment and neuroinflammation<sup>1,2</sup>. This study investigates the function of the immune-checkpoint molecule TIM-3 (encoded by <i>HAVCR2</i>) in microglia. TIM-3 was recently identified as a genetic risk factor for late-onset Alzheimer’s disease<sup>3</sup>, and it can induce T cell exhaustion<sup>4</sup>. However, its specific function in brain microglia remains unclear. We demonstrate in mouse models that TGFβ signalling induces TIM-3 expression in microglia. In turn, TIM-3 interacts with SMAD2 and TGFBR2 through its carboxy-terminal tail, which enhances TGFβ signalling by promoting TGFBR-mediated SMAD2 phosphorylation, and this process maintains microglial homeostasis. Genetic deletion of <i>Havcr2</i> in microglia leads to increased phagocytic activity and a gene-expression profile consistent with the neurodegenerative microglial phenotype (MGnD), also referred to as disease-associated microglia (DAM). Furthermore, microglia-targeted deletion of <i>Havcr2</i> ameliorates cognitive impairment and reduces amyloid-β pathology in 5×FAD mice (a transgenic model of Alzheimer’s disease). Single-nucleus RNA sequencing revealed a subpopulation of MGnD microglia in <i>Havcr2</i>-deficient 5×FAD mice characterized by increased pro-phagocytic and anti-inflammatory gene expression alongside reduced pro-inflammatory gene expression. These transcriptomic changes were corroborated by single-cell RNA sequencing data across most microglial clusters in <i>Havcr2</i>-deficient 5×FAD mice. Our findings reveal that TIM-3 mediates microglia homeostasis through TGFβ signalling and highlight the therapeutic potential of targeting microglial TIM-3 in Alzheimer’s disease.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"108 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immune checkpoint TIM-3 regulates microglia and Alzheimer’s disease\",\"authors\":\"Kimitoshi Kimura, Ayshwarya Subramanian, Zhuoran Yin, Ahad Khalilnezhad, Yufan Wu, Danyang He, Karen O. Dixon, Udbhav Kasyap Chitta, Xiaokai Ding, Niraj Adhikari, Isabell Guzchenko, Xiaoming Zhang, Ruihan Tang, Thomas Pertel, Samuel A. Myers, Aastha Aastha, Masashi Nomura, Ghazaleh Eskandari-Sedighi, Vasundhara Singh, Lei Liu, Conner Lambden, Kilian L. Kleemann, Neha Gupta, Jen-Li Barry, Ana Durao, Yiran Cheng, Sebastian Silveira, Huiyuan Zhang, Aamir Suhail, Toni Delorey, Orit Rozenblatt-Rosen, Gordon J. Freeman, Dennis J. Selkoe, Howard L. Weiner, Mathew Blurton-Jones, Carlos Cruchaga, Aviv Regev, Mario L. Suvà, Oleg Butovsky, Vijay K. Kuchroo\",\"doi\":\"10.1038/s41586-025-08852-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microglia are the resident immune cells in the brain and have pivotal roles in neurodevelopment and neuroinflammation<sup>1,2</sup>. This study investigates the function of the immune-checkpoint molecule TIM-3 (encoded by <i>HAVCR2</i>) in microglia. TIM-3 was recently identified as a genetic risk factor for late-onset Alzheimer’s disease<sup>3</sup>, and it can induce T cell exhaustion<sup>4</sup>. However, its specific function in brain microglia remains unclear. We demonstrate in mouse models that TGFβ signalling induces TIM-3 expression in microglia. In turn, TIM-3 interacts with SMAD2 and TGFBR2 through its carboxy-terminal tail, which enhances TGFβ signalling by promoting TGFBR-mediated SMAD2 phosphorylation, and this process maintains microglial homeostasis. Genetic deletion of <i>Havcr2</i> in microglia leads to increased phagocytic activity and a gene-expression profile consistent with the neurodegenerative microglial phenotype (MGnD), also referred to as disease-associated microglia (DAM). Furthermore, microglia-targeted deletion of <i>Havcr2</i> ameliorates cognitive impairment and reduces amyloid-β pathology in 5×FAD mice (a transgenic model of Alzheimer’s disease). Single-nucleus RNA sequencing revealed a subpopulation of MGnD microglia in <i>Havcr2</i>-deficient 5×FAD mice characterized by increased pro-phagocytic and anti-inflammatory gene expression alongside reduced pro-inflammatory gene expression. These transcriptomic changes were corroborated by single-cell RNA sequencing data across most microglial clusters in <i>Havcr2</i>-deficient 5×FAD mice. Our findings reveal that TIM-3 mediates microglia homeostasis through TGFβ signalling and highlight the therapeutic potential of targeting microglial TIM-3 in Alzheimer’s disease.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-08852-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08852-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Immune checkpoint TIM-3 regulates microglia and Alzheimer’s disease
Microglia are the resident immune cells in the brain and have pivotal roles in neurodevelopment and neuroinflammation1,2. This study investigates the function of the immune-checkpoint molecule TIM-3 (encoded by HAVCR2) in microglia. TIM-3 was recently identified as a genetic risk factor for late-onset Alzheimer’s disease3, and it can induce T cell exhaustion4. However, its specific function in brain microglia remains unclear. We demonstrate in mouse models that TGFβ signalling induces TIM-3 expression in microglia. In turn, TIM-3 interacts with SMAD2 and TGFBR2 through its carboxy-terminal tail, which enhances TGFβ signalling by promoting TGFBR-mediated SMAD2 phosphorylation, and this process maintains microglial homeostasis. Genetic deletion of Havcr2 in microglia leads to increased phagocytic activity and a gene-expression profile consistent with the neurodegenerative microglial phenotype (MGnD), also referred to as disease-associated microglia (DAM). Furthermore, microglia-targeted deletion of Havcr2 ameliorates cognitive impairment and reduces amyloid-β pathology in 5×FAD mice (a transgenic model of Alzheimer’s disease). Single-nucleus RNA sequencing revealed a subpopulation of MGnD microglia in Havcr2-deficient 5×FAD mice characterized by increased pro-phagocytic and anti-inflammatory gene expression alongside reduced pro-inflammatory gene expression. These transcriptomic changes were corroborated by single-cell RNA sequencing data across most microglial clusters in Havcr2-deficient 5×FAD mice. Our findings reveal that TIM-3 mediates microglia homeostasis through TGFβ signalling and highlight the therapeutic potential of targeting microglial TIM-3 in Alzheimer’s disease.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.