Du Su, Weiwei Ben, Bjarne W. Strobel, Zhimin Qiang
{"title":"城市污水氯消毒对接收河流的影响:有机物和微生物群落的变化","authors":"Du Su, Weiwei Ben, Bjarne W. Strobel, Zhimin Qiang","doi":"10.1016/j.jhazmat.2025.138232","DOIUrl":null,"url":null,"abstract":"Effluents from wastewater treatment plants (WWTPs) can impact various aspects of receiving aquatic ecosystems, yet the specific effects of chlorine disinfection of effluents on these ecosystems remain poorly understood. In this study, a simulated flow-through channel system was employed to evaluate the changes in water quality and microbial community in receiving rivers resulting from the discharge of WWTP effluent, with or without chlorination. Results showed that dissolved organic matter (DOM) in secondary effluent from WWTPs exhibited higher fluorescence intensity and elevated levels of biopolymers, humic acids, and low molecular weight compounds compared to river water. Microbial analysis revealed that the input of secondary effluent promoted the proliferation of diverse microbial communities in periphyton of the receiving water, while the chlorinated effluents selectively inhibited chlorine-sensitive taxa in periphyton and favored chlorine-tolerant ones. Chlorine disinfection effectively reduced most pathogens in effluents; however, certain genera, such as <em>Neisseriaceae</em> and <em>Escherichia</em>-<em>Shigella</em>, persisted. Moreover, exposure to chlorinated effluent significantly elevated the relative abundance of <em>Pseudomonas</em> in periphyton compared to other conditions, raising concerns about the persistence of chlorine-tolerant pathogens in aquatic environments. These findings highlight the critical need to further evaluate the impact of the disinfection process in WWTPs on the long-term health and stability of riverine ecosystems.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"25 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of chlorine disinfection of municipal sewage effluent on receiving rivers: changes in organic matter and microbial communities\",\"authors\":\"Du Su, Weiwei Ben, Bjarne W. Strobel, Zhimin Qiang\",\"doi\":\"10.1016/j.jhazmat.2025.138232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effluents from wastewater treatment plants (WWTPs) can impact various aspects of receiving aquatic ecosystems, yet the specific effects of chlorine disinfection of effluents on these ecosystems remain poorly understood. In this study, a simulated flow-through channel system was employed to evaluate the changes in water quality and microbial community in receiving rivers resulting from the discharge of WWTP effluent, with or without chlorination. Results showed that dissolved organic matter (DOM) in secondary effluent from WWTPs exhibited higher fluorescence intensity and elevated levels of biopolymers, humic acids, and low molecular weight compounds compared to river water. Microbial analysis revealed that the input of secondary effluent promoted the proliferation of diverse microbial communities in periphyton of the receiving water, while the chlorinated effluents selectively inhibited chlorine-sensitive taxa in periphyton and favored chlorine-tolerant ones. Chlorine disinfection effectively reduced most pathogens in effluents; however, certain genera, such as <em>Neisseriaceae</em> and <em>Escherichia</em>-<em>Shigella</em>, persisted. Moreover, exposure to chlorinated effluent significantly elevated the relative abundance of <em>Pseudomonas</em> in periphyton compared to other conditions, raising concerns about the persistence of chlorine-tolerant pathogens in aquatic environments. These findings highlight the critical need to further evaluate the impact of the disinfection process in WWTPs on the long-term health and stability of riverine ecosystems.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.138232\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138232","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Impacts of chlorine disinfection of municipal sewage effluent on receiving rivers: changes in organic matter and microbial communities
Effluents from wastewater treatment plants (WWTPs) can impact various aspects of receiving aquatic ecosystems, yet the specific effects of chlorine disinfection of effluents on these ecosystems remain poorly understood. In this study, a simulated flow-through channel system was employed to evaluate the changes in water quality and microbial community in receiving rivers resulting from the discharge of WWTP effluent, with or without chlorination. Results showed that dissolved organic matter (DOM) in secondary effluent from WWTPs exhibited higher fluorescence intensity and elevated levels of biopolymers, humic acids, and low molecular weight compounds compared to river water. Microbial analysis revealed that the input of secondary effluent promoted the proliferation of diverse microbial communities in periphyton of the receiving water, while the chlorinated effluents selectively inhibited chlorine-sensitive taxa in periphyton and favored chlorine-tolerant ones. Chlorine disinfection effectively reduced most pathogens in effluents; however, certain genera, such as Neisseriaceae and Escherichia-Shigella, persisted. Moreover, exposure to chlorinated effluent significantly elevated the relative abundance of Pseudomonas in periphyton compared to other conditions, raising concerns about the persistence of chlorine-tolerant pathogens in aquatic environments. These findings highlight the critical need to further evaluate the impact of the disinfection process in WWTPs on the long-term health and stability of riverine ecosystems.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.