电荷驱动的稀水准固体电解质絮凝策略使锌金属水电池稳定

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ying Zhang , Yuqin Wang , Xianzhong Yang , Haoxuan Liu , Kuan Wu , Lei Zhang , Dongliang Chao , Liangxu Lin , Shi-Xue Dou , Chao Wu
{"title":"电荷驱动的稀水准固体电解质絮凝策略使锌金属水电池稳定","authors":"Ying Zhang ,&nbsp;Yuqin Wang ,&nbsp;Xianzhong Yang ,&nbsp;Haoxuan Liu ,&nbsp;Kuan Wu ,&nbsp;Lei Zhang ,&nbsp;Dongliang Chao ,&nbsp;Liangxu Lin ,&nbsp;Shi-Xue Dou ,&nbsp;Chao Wu","doi":"10.1016/j.ensm.2025.104246","DOIUrl":null,"url":null,"abstract":"<div><div>The practical applications of zinc-based aqueous batteries have been impeded by their dendrite growth, hydrogen evolution, and corrosion, which stem from the side reactions related to free water in conventional electrolytes. Instead of traditional high-concentration aqueous electrolytes, in this study, we propose a charge-driven flocculation strategy via aggregating Zn<sup>2+</sup> onto 2D nanosheets of low-cost H<sub>3</sub>Sb<sub>3</sub>P<sub>2</sub>O<sub>14</sub>, resulting in a highly concentrated lean-water Zn-ion quasi-solid electrolyte (LWZQE). This electrolyte features a Zn salt concentration of 13.75 M with just 16.4 wt % water content, and this lean-water characteristic significantly mitigates the side reactions from free water in the electrolyte, improves compatibility with the Zn anode, and suppresses the shuttle effect of the iodine cathode. The assembled symmetric batteries demonstrate dendrite-free Zn plating/stripping over 5500 h. The Zn-I<sub>2</sub> full cell endows a remarkable reversibility of 8000 cycles, with a capacity retention of 79.1 %. This charge-driven flocculation strategy opens up a new avenue for developing cost-effective, highly concentrated aqueous electrolytes for the next generation Zn-based batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"78 ","pages":"Article 104246"},"PeriodicalIF":18.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge-driven flocculation strategy for lean-water quasi-solid electrolyte enabling stable aqueous Zn metal batteries\",\"authors\":\"Ying Zhang ,&nbsp;Yuqin Wang ,&nbsp;Xianzhong Yang ,&nbsp;Haoxuan Liu ,&nbsp;Kuan Wu ,&nbsp;Lei Zhang ,&nbsp;Dongliang Chao ,&nbsp;Liangxu Lin ,&nbsp;Shi-Xue Dou ,&nbsp;Chao Wu\",\"doi\":\"10.1016/j.ensm.2025.104246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The practical applications of zinc-based aqueous batteries have been impeded by their dendrite growth, hydrogen evolution, and corrosion, which stem from the side reactions related to free water in conventional electrolytes. Instead of traditional high-concentration aqueous electrolytes, in this study, we propose a charge-driven flocculation strategy via aggregating Zn<sup>2+</sup> onto 2D nanosheets of low-cost H<sub>3</sub>Sb<sub>3</sub>P<sub>2</sub>O<sub>14</sub>, resulting in a highly concentrated lean-water Zn-ion quasi-solid electrolyte (LWZQE). This electrolyte features a Zn salt concentration of 13.75 M with just 16.4 wt % water content, and this lean-water characteristic significantly mitigates the side reactions from free water in the electrolyte, improves compatibility with the Zn anode, and suppresses the shuttle effect of the iodine cathode. The assembled symmetric batteries demonstrate dendrite-free Zn plating/stripping over 5500 h. The Zn-I<sub>2</sub> full cell endows a remarkable reversibility of 8000 cycles, with a capacity retention of 79.1 %. This charge-driven flocculation strategy opens up a new avenue for developing cost-effective, highly concentrated aqueous electrolytes for the next generation Zn-based batteries.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"78 \",\"pages\":\"Article 104246\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725002442\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002442","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锌基水性电池的实际应用一直受到其枝晶生长、析氢和腐蚀的阻碍,这些问题源于与传统电解质中游离水相关的副反应。在这项研究中,我们提出了一种电荷驱动的絮凝策略,通过将Zn2+聚集在低成本的H3Sb3P2O14的二维纳米片上,得到高浓度的贫水zn离子准固体电解质(LWZQE)。该电解质的锌盐浓度为13.75 M,含水量仅为16.4 wt%,这种稀水特性显著减轻了电解质中游离水的副反应,提高了与Zn阳极的相容性,并抑制了碘阴极的穿梭效应。在5500 h的时间内,组装的对称电池表现出无枝晶的镀锌/剥离。锌- i2充满电池具有8000次循环的可逆性,容量保持率为79.1%。这种电荷驱动的絮凝策略为开发具有成本效益的、用于下一代锌基电池的高浓度水溶液电解质开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Charge-driven flocculation strategy for lean-water quasi-solid electrolyte enabling stable aqueous Zn metal batteries

Charge-driven flocculation strategy for lean-water quasi-solid electrolyte enabling stable aqueous Zn metal batteries

Charge-driven flocculation strategy for lean-water quasi-solid electrolyte enabling stable aqueous Zn metal batteries
The practical applications of zinc-based aqueous batteries have been impeded by their dendrite growth, hydrogen evolution, and corrosion, which stem from the side reactions related to free water in conventional electrolytes. Instead of traditional high-concentration aqueous electrolytes, in this study, we propose a charge-driven flocculation strategy via aggregating Zn2+ onto 2D nanosheets of low-cost H3Sb3P2O14, resulting in a highly concentrated lean-water Zn-ion quasi-solid electrolyte (LWZQE). This electrolyte features a Zn salt concentration of 13.75 M with just 16.4 wt % water content, and this lean-water characteristic significantly mitigates the side reactions from free water in the electrolyte, improves compatibility with the Zn anode, and suppresses the shuttle effect of the iodine cathode. The assembled symmetric batteries demonstrate dendrite-free Zn plating/stripping over 5500 h. The Zn-I2 full cell endows a remarkable reversibility of 8000 cycles, with a capacity retention of 79.1 %. This charge-driven flocculation strategy opens up a new avenue for developing cost-effective, highly concentrated aqueous electrolytes for the next generation Zn-based batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信