洞察聚(七嗪亚胺)纳米片的自解离使CO2光还原增强

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-04-09 DOI:10.1002/aic.18850
Min Zhou, Xiaoyong Du, Thangaraj Thiruppathiraja, Weilin Li, Zheyang Liu, Xinyan Xiao, Wanjun Wang, Huaming Li, Weidong Shi, Zhifeng Jiang
{"title":"洞察聚(七嗪亚胺)纳米片的自解离使CO2光还原增强","authors":"Min Zhou, Xiaoyong Du, Thangaraj Thiruppathiraja, Weilin Li, Zheyang Liu, Xinyan Xiao, Wanjun Wang, Huaming Li, Weidong Shi, Zhifeng Jiang","doi":"10.1002/aic.18850","DOIUrl":null,"url":null,"abstract":"Doping triazine units over poly(heptazine imide) (PHI) nanosheets outperforms higher CO<sub>2</sub> reduction efficiency than the individual counterparts. Herein, we report a molten salt-steam thermal-assisted approach of coupling KCl and Mg(OH)<sub>2</sub> for designing highly efficient triazine-doped PHI (TPHI) in which the n-type dopant of the triazine unit is produced from the self-dissociation of the heptazine. The developed TPHI demonstrates the fine-tuned hydrophilicity, enhanced electron transportation, and promoted reductive ability, evidenced by contact angle, photoelectrochemical, femtosecond transient absorption, surface photovoltage tests, energy band evaluation, and corresponding calculations. The optimized TPHI sample facilitates CO generation (25.1 μmol h<sup>−1</sup> g<sup>−1</sup>) through the photocatalytic CO<sub>2</sub> reduction reaction under solar-simulated light irradiation. Our insight enables a simple strategy for molecular-level electron manipulations in highly effective polymeric photocatalysts using n-dopant self-doping engineering.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"23 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into self-dissociation of poly(heptazine imide) nanosheets enables boosted CO2 photoreduction\",\"authors\":\"Min Zhou, Xiaoyong Du, Thangaraj Thiruppathiraja, Weilin Li, Zheyang Liu, Xinyan Xiao, Wanjun Wang, Huaming Li, Weidong Shi, Zhifeng Jiang\",\"doi\":\"10.1002/aic.18850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Doping triazine units over poly(heptazine imide) (PHI) nanosheets outperforms higher CO<sub>2</sub> reduction efficiency than the individual counterparts. Herein, we report a molten salt-steam thermal-assisted approach of coupling KCl and Mg(OH)<sub>2</sub> for designing highly efficient triazine-doped PHI (TPHI) in which the n-type dopant of the triazine unit is produced from the self-dissociation of the heptazine. The developed TPHI demonstrates the fine-tuned hydrophilicity, enhanced electron transportation, and promoted reductive ability, evidenced by contact angle, photoelectrochemical, femtosecond transient absorption, surface photovoltage tests, energy band evaluation, and corresponding calculations. The optimized TPHI sample facilitates CO generation (25.1 μmol h<sup>−1</sup> g<sup>−1</sup>) through the photocatalytic CO<sub>2</sub> reduction reaction under solar-simulated light irradiation. Our insight enables a simple strategy for molecular-level electron manipulations in highly effective polymeric photocatalysts using n-dopant self-doping engineering.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18850\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18850","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在聚七嗪亚胺(PHI)纳米片上掺杂三嗪单元比单独的对应物具有更高的CO2还原效率。在此,我们报道了一种熔盐蒸汽热辅助方法,通过KCl和Mg(OH)2偶联来设计高效的三嗪掺杂PHI (TPHI),其中三嗪单元的n型掺杂是由七嗪的自解离产生的。通过接触角、光电化学、飞秒瞬态吸收、表面光电压测试、能带评估和相应的计算证明,所开发的TPHI具有微调的亲水性、增强的电子传递和增强的还原能力。优化后的TPHI样品在太阳模拟光照射下通过光催化CO2还原反应生成CO (25.1 μmol h−1 g−1)。我们的见解为利用n掺杂自掺杂工程在高效聚合物光催化剂中进行分子级电子操纵提供了一种简单的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insight into self-dissociation of poly(heptazine imide) nanosheets enables boosted CO2 photoreduction
Doping triazine units over poly(heptazine imide) (PHI) nanosheets outperforms higher CO2 reduction efficiency than the individual counterparts. Herein, we report a molten salt-steam thermal-assisted approach of coupling KCl and Mg(OH)2 for designing highly efficient triazine-doped PHI (TPHI) in which the n-type dopant of the triazine unit is produced from the self-dissociation of the heptazine. The developed TPHI demonstrates the fine-tuned hydrophilicity, enhanced electron transportation, and promoted reductive ability, evidenced by contact angle, photoelectrochemical, femtosecond transient absorption, surface photovoltage tests, energy band evaluation, and corresponding calculations. The optimized TPHI sample facilitates CO generation (25.1 μmol h−1 g−1) through the photocatalytic CO2 reduction reaction under solar-simulated light irradiation. Our insight enables a simple strategy for molecular-level electron manipulations in highly effective polymeric photocatalysts using n-dopant self-doping engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信