利用肽亲和配体从重组液中纯化慢病毒

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Eduardo Barbieri, Gina N. Mollica, Sobhana A. Sripada, Shrirarjun Shastry, Yuxuan Wu, Arianna Minzoni, Will Smith, Elena Wuestenhagen, Annika Aldinger, Heiner Graalfs, Michael S. Crapanzano, Oliver Rammo, Michael M. Schulte, Michael A. Daniele, Stefano Menegatti
{"title":"利用肽亲和配体从重组液中纯化慢病毒","authors":"Eduardo Barbieri, Gina N. Mollica, Sobhana A. Sripada, Shrirarjun Shastry, Yuxuan Wu, Arianna Minzoni, Will Smith, Elena Wuestenhagen, Annika Aldinger, Heiner Graalfs, Michael S. Crapanzano, Oliver Rammo, Michael M. Schulte, Michael A. Daniele, Stefano Menegatti","doi":"10.1002/btm2.70017","DOIUrl":null,"url":null,"abstract":"Lentiviral vectors (LVVs) are emerging as an enabling tool in gene and cell therapies, yet the toolkit for purifying them at scale is still immature. A pivoting moment in LVV isolation technology was marked by the introduction of affinity ligands for LVVs pseudo‐typed with Vesicular Stomatitis Virus G (VSV‐G) protein. Camelid antibody ligands were initially discovered and utilized to functionalize a resin with a capacity of 10<jats:sup>14</jats:sup> LVV particles per liter (vp/L). Shortly thereafter, our team introduced VSV‐G‐targeting peptides and assessed their application as ligands for purifying LVVs from HEK293 cell harvests. In this study, we utilized these peptides to develop novel affinity resins and—first in this field—affinity membranes with optimal binding capacity, productivity, and removal of host cell contaminants. To that end, we evaluated resins of different material, particle and pore size, and functional density, as well as membranes with different fiber morphology, porosity, and ligand distribution. The lead peptide‐functionalized resin and membrane featured high capacity (5 × 10<jats:sup>9</jats:sup> and 1.2 × 10<jats:sup>9</jats:sup> transducing LVV units per mL of adsorbent, TU/mL) and productivity (2.9 × 10<jats:sup>9</jats:sup> and 1.7 × 10<jats:sup>9</jats:sup> TU/mL min) and afforded a substantial enrichment of cell‐transducing LVVs and reduction of contaminants (110–170‐fold) in the eluates. Finally, we demonstrated an LVV purification process in four steps: clarification and nuclease treatment, affinity capture in bind‐and‐elute mode, polishing in flow‐through mode, and ultra/dia‐filtration and sterile filtration. The processes afforded yields of 33%–46%, a residual HCP level below 5 ng/mL, and productivity of 1.25–1.5 × 10<jats:sup>14</jats:sup> active LVV particles per hour and liter of adsorbent.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"183 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a process of lentivirus purification from recombinant fluids using peptide affinity ligands\",\"authors\":\"Eduardo Barbieri, Gina N. Mollica, Sobhana A. Sripada, Shrirarjun Shastry, Yuxuan Wu, Arianna Minzoni, Will Smith, Elena Wuestenhagen, Annika Aldinger, Heiner Graalfs, Michael S. Crapanzano, Oliver Rammo, Michael M. Schulte, Michael A. Daniele, Stefano Menegatti\",\"doi\":\"10.1002/btm2.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lentiviral vectors (LVVs) are emerging as an enabling tool in gene and cell therapies, yet the toolkit for purifying them at scale is still immature. A pivoting moment in LVV isolation technology was marked by the introduction of affinity ligands for LVVs pseudo‐typed with Vesicular Stomatitis Virus G (VSV‐G) protein. Camelid antibody ligands were initially discovered and utilized to functionalize a resin with a capacity of 10<jats:sup>14</jats:sup> LVV particles per liter (vp/L). Shortly thereafter, our team introduced VSV‐G‐targeting peptides and assessed their application as ligands for purifying LVVs from HEK293 cell harvests. In this study, we utilized these peptides to develop novel affinity resins and—first in this field—affinity membranes with optimal binding capacity, productivity, and removal of host cell contaminants. To that end, we evaluated resins of different material, particle and pore size, and functional density, as well as membranes with different fiber morphology, porosity, and ligand distribution. The lead peptide‐functionalized resin and membrane featured high capacity (5 × 10<jats:sup>9</jats:sup> and 1.2 × 10<jats:sup>9</jats:sup> transducing LVV units per mL of adsorbent, TU/mL) and productivity (2.9 × 10<jats:sup>9</jats:sup> and 1.7 × 10<jats:sup>9</jats:sup> TU/mL min) and afforded a substantial enrichment of cell‐transducing LVVs and reduction of contaminants (110–170‐fold) in the eluates. Finally, we demonstrated an LVV purification process in four steps: clarification and nuclease treatment, affinity capture in bind‐and‐elute mode, polishing in flow‐through mode, and ultra/dia‐filtration and sterile filtration. The processes afforded yields of 33%–46%, a residual HCP level below 5 ng/mL, and productivity of 1.25–1.5 × 10<jats:sup>14</jats:sup> active LVV particles per hour and liter of adsorbent.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.70017\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

慢病毒载体(LVVs)正在成为基因和细胞治疗中的一种使能工具,但用于大规模纯化它们的工具包仍不成熟。水疱性口炎病毒G (VSV - G)蛋白假型LVV的亲和配体的引入标志着LVV分离技术的转折点。骆驼抗体配体最初被发现并用于功能化树脂,容量为1014 LVV颗粒/升(vp/L)。此后不久,我们的团队引入了VSV - G靶向肽,并评估了它们作为从HEK293细胞中纯化lvv的配体的应用。在这项研究中,我们利用这些肽开发了新的亲和树脂,并且在该领域首次具有最佳的结合能力,生产力和去除宿主细胞污染物的亲和膜。为此,我们评估了不同材料、颗粒和孔径、功能密度的树脂,以及具有不同纤维形态、孔隙率和配体分布的膜。铅肽功能化树脂和膜具有高容量(5 × 109和1.2 × 109转导LVV单位/mL吸附剂,TU/mL)和生产力(2.9 × 109和1.7 × 109 TU/mL min),并提供大量细胞转导LVV的富集和减少污染物(110-170倍)在洗脱液中。最后,我们演示了LVV净化过程的四个步骤:澄清和核酸酶处理,结合和洗脱模式的亲和捕获,流动模式的抛光,超/超滤和无菌过滤。该工艺的收率为33% ~ 46%,残留HCP水平低于5 ng/mL,每小时生产1.25 ~ 1.5 × 1014个活性LVV颗粒和每升吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a process of lentivirus purification from recombinant fluids using peptide affinity ligands
Lentiviral vectors (LVVs) are emerging as an enabling tool in gene and cell therapies, yet the toolkit for purifying them at scale is still immature. A pivoting moment in LVV isolation technology was marked by the introduction of affinity ligands for LVVs pseudo‐typed with Vesicular Stomatitis Virus G (VSV‐G) protein. Camelid antibody ligands were initially discovered and utilized to functionalize a resin with a capacity of 1014 LVV particles per liter (vp/L). Shortly thereafter, our team introduced VSV‐G‐targeting peptides and assessed their application as ligands for purifying LVVs from HEK293 cell harvests. In this study, we utilized these peptides to develop novel affinity resins and—first in this field—affinity membranes with optimal binding capacity, productivity, and removal of host cell contaminants. To that end, we evaluated resins of different material, particle and pore size, and functional density, as well as membranes with different fiber morphology, porosity, and ligand distribution. The lead peptide‐functionalized resin and membrane featured high capacity (5 × 109 and 1.2 × 109 transducing LVV units per mL of adsorbent, TU/mL) and productivity (2.9 × 109 and 1.7 × 109 TU/mL min) and afforded a substantial enrichment of cell‐transducing LVVs and reduction of contaminants (110–170‐fold) in the eluates. Finally, we demonstrated an LVV purification process in four steps: clarification and nuclease treatment, affinity capture in bind‐and‐elute mode, polishing in flow‐through mode, and ultra/dia‐filtration and sterile filtration. The processes afforded yields of 33%–46%, a residual HCP level below 5 ng/mL, and productivity of 1.25–1.5 × 1014 active LVV particles per hour and liter of adsorbent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信