神经网络学习分类任务的编码方案

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alexander van Meegen, Haim Sompolinsky
{"title":"神经网络学习分类任务的编码方案","authors":"Alexander van Meegen, Haim Sompolinsky","doi":"10.1038/s41467-025-58276-6","DOIUrl":null,"url":null,"abstract":"<p>Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"242 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coding schemes in neural networks learning classification tasks\",\"authors\":\"Alexander van Meegen, Haim Sompolinsky\",\"doi\":\"10.1038/s41467-025-58276-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"242 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58276-6\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58276-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经网络具有生成任务相关特征的有意义表示的关键能力。事实上,通过适当的缩放,神经网络中的监督学习可以产生强大的、任务依赖的特征学习。然而,紧急表征的性质仍然不清楚。为了理解学习对表征的影响,我们研究了使用贝叶斯框架的全连接、宽神经网络学习分类任务,其中学习塑造了网络权重的后验分布。与之前的发现一致,我们对特征学习机制(也称为“非懒惰”机制)的分析表明,网络获得了强大的、数据依赖的特征,表示为编码方案,其中神经元对每个输入的响应由其类成员主导。令人惊讶的是,编码方案的性质主要取决于神经元的非线性。在线性网络中,出现了任务的模拟编码方案;在非线性网络中,强自发对称性破缺会导致冗余或稀疏编码方案。我们的研究结果强调了权重缩放和神经元非线性等网络特性如何深刻地影响突现表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coding schemes in neural networks learning classification tasks

Coding schemes in neural networks learning classification tasks

Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信