{"title":"Spin‐Selective Anisotropic Magnetoresistance Driven by Chirality in DNA","authors":"Tapan Kumar Das, Naupada Preeyanka, Suryakant Mishra, Yutao Sang, Claudio Fontanesi","doi":"10.1002/adfm.202425377","DOIUrl":null,"url":null,"abstract":"The magnetoresistance (MR) measurements of a ferromagnetic (FM) surface functionalized with 30 base‐pairs DNA molecules (30bp‐dsDNA) is measured both as a function of the angle between the surface normal and magnetization direction and as a function of temperature. In particular, the angular dependence MR follows a periodic pattern passing through zero for the in‐plane magnetization of the ferromagnetic surface, i.e., 90° to the minimum/maximum value of MR for the out‐of‐plane magnetization, i.e., 0°/180°. This is a clear‐cut demonstration of the spatial dependence (anisotropy) of the chiral‐induced spin (CISS) selectivity effect. Remarkably, the anisotropic nature of magnetoresistance in chiral molecular systems demonstrates their significant potential application in the field of organic spintronics, paving the way for innovative developments in spin‐based devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425377","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
用 30 碱基对 DNA 分子(30bp-dsDNA)功能化的铁磁(FM)表面的磁阻(MR)测量值既是表面法线与磁化方向之间角度的函数,也是温度的函数。特别是,MR 的角度依赖性遵循一种周期性模式,即铁磁表面面内磁化为零,即 90°,面外磁化为 MR 的最小/最大值,即 0°/180°。这清楚地表明了手性诱导自旋(CISS)选择性效应的空间依赖性(各向异性)。值得注意的是,手性分子体系磁阻的各向异性证明了它们在有机自旋电子学领域的巨大应用潜力,为自旋器件的创新发展铺平了道路。
Spin‐Selective Anisotropic Magnetoresistance Driven by Chirality in DNA
The magnetoresistance (MR) measurements of a ferromagnetic (FM) surface functionalized with 30 base‐pairs DNA molecules (30bp‐dsDNA) is measured both as a function of the angle between the surface normal and magnetization direction and as a function of temperature. In particular, the angular dependence MR follows a periodic pattern passing through zero for the in‐plane magnetization of the ferromagnetic surface, i.e., 90° to the minimum/maximum value of MR for the out‐of‐plane magnetization, i.e., 0°/180°. This is a clear‐cut demonstration of the spatial dependence (anisotropy) of the chiral‐induced spin (CISS) selectivity effect. Remarkably, the anisotropic nature of magnetoresistance in chiral molecular systems demonstrates their significant potential application in the field of organic spintronics, paving the way for innovative developments in spin‐based devices.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.