基于多实例学习的光学时间拉伸成像流式细胞术在结直肠癌无标记分型中的应用。

Sini Pi, Liye Mei, Liang Tao, Sisi Mei, Zhaoyi Ye
{"title":"基于多实例学习的光学时间拉伸成像流式细胞术在结直肠癌无标记分型中的应用。","authors":"Sini Pi, Liye Mei, Liang Tao, Sisi Mei, Zhaoyi Ye","doi":"10.1002/jbio.70026","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies, necessitating the study of cellular and molecular changes within the tumor microenvironment. While pathological image analysis remains the gold standard, its labor-intensive nature limits its broad application. This study proposes a label-free CRC typing approach using intelligent optical time-stretch (OTS) imaging flow cytometry combined with multi-instance learning. Specifically, we construct a high-throughput cell image acquisition system by integrating OTS imaging with microfluidic cell focusing, capturing 363 931 cell images from 10 clinical samples. To address cell diversity and heterogeneity, we employ a multi-instance learning framework, which incorporates a multi-level attention mechanism to explore feature interactions at both channel and instance levels. Finally, we apply a majority voting mechanism to enable efficient label-free CRC typing. Our method achieves an accuracy of 85.78% in distinguishing normal and cancerous cells, while encouraging CRC typing performance across all 10 clinical samples.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e70026"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-Free Typing of Colorectal Cancer by Optical Time-Stretch Imaging Flow Cytometry With Multi-Instance Learning.\",\"authors\":\"Sini Pi, Liye Mei, Liang Tao, Sisi Mei, Zhaoyi Ye\",\"doi\":\"10.1002/jbio.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies, necessitating the study of cellular and molecular changes within the tumor microenvironment. While pathological image analysis remains the gold standard, its labor-intensive nature limits its broad application. This study proposes a label-free CRC typing approach using intelligent optical time-stretch (OTS) imaging flow cytometry combined with multi-instance learning. Specifically, we construct a high-throughput cell image acquisition system by integrating OTS imaging with microfluidic cell focusing, capturing 363 931 cell images from 10 clinical samples. To address cell diversity and heterogeneity, we employ a multi-instance learning framework, which incorporates a multi-level attention mechanism to explore feature interactions at both channel and instance levels. Finally, we apply a majority voting mechanism to enable efficient label-free CRC typing. Our method achieves an accuracy of 85.78% in distinguishing normal and cancerous cells, while encouraging CRC typing performance across all 10 clinical samples.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e70026\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.70026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.70026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)是最常见的胃肠道恶性肿瘤之一,因此有必要对肿瘤微环境中的细胞和分子变化进行研究。虽然病理图像分析仍是黄金标准,但其劳动密集型的特点限制了它的广泛应用。本研究提出了一种使用智能光学时间拉伸(OTS)成像流式细胞仪并结合多实例学习的无标记 CRC 分型方法。具体来说,我们将 OTS 成像与微流控细胞聚焦技术相结合,构建了一个高通量细胞图像采集系统,从 10 个临床样本中采集了 363 931 张细胞图像。为了解决细胞多样性和异质性问题,我们采用了多实例学习框架,该框架结合了多层次关注机制,以探索通道和实例层面的特征交互。最后,我们采用多数投票机制,实现了高效的无标签 CRC 分型。我们的方法在区分正常细胞和癌细胞方面达到了 85.78% 的准确率,同时提高了所有 10 个临床样本的 CRC 分型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Label-Free Typing of Colorectal Cancer by Optical Time-Stretch Imaging Flow Cytometry With Multi-Instance Learning.

Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies, necessitating the study of cellular and molecular changes within the tumor microenvironment. While pathological image analysis remains the gold standard, its labor-intensive nature limits its broad application. This study proposes a label-free CRC typing approach using intelligent optical time-stretch (OTS) imaging flow cytometry combined with multi-instance learning. Specifically, we construct a high-throughput cell image acquisition system by integrating OTS imaging with microfluidic cell focusing, capturing 363 931 cell images from 10 clinical samples. To address cell diversity and heterogeneity, we employ a multi-instance learning framework, which incorporates a multi-level attention mechanism to explore feature interactions at both channel and instance levels. Finally, we apply a majority voting mechanism to enable efficient label-free CRC typing. Our method achieves an accuracy of 85.78% in distinguishing normal and cancerous cells, while encouraging CRC typing performance across all 10 clinical samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信