Christopher J Neylan, Michael G Levin, Katherine Hartmann, Katherine Beigel, Sam Khodursky, John S DePaolo, Sarah Abramowitz, Emma E Furth, Robert O Heuckeroth, Scott M Damrauer, Lillias H Maguire
{"title":"全基因组关联荟萃分析确定了126个憩室疾病的新位点,并涉及结缔组织和结肠运动。","authors":"Christopher J Neylan, Michael G Levin, Katherine Hartmann, Katherine Beigel, Sam Khodursky, John S DePaolo, Sarah Abramowitz, Emma E Furth, Robert O Heuckeroth, Scott M Damrauer, Lillias H Maguire","doi":"10.1101/2025.03.27.25324777","DOIUrl":null,"url":null,"abstract":"<p><p>Diverticular disease is a common and morbid complex phenotype influenced by both innate and environmental risk factors. We performed the largest genome-wide association study meta-analysis for diverticular disease, identifying 126 novel loci. Employing multiple downstream analytic strategies, including tissue and pathway enrichment, statistical fine-mapping, allele-specific expression, protein quantitative trait loci and drug-target investigations, and linkage disequilibrium score regression, we prioritized causal genes and produced several lines of evidence linking diverticular disease to connective tissue biology and colonic motility. We substantiated these findings by integrating single-cell RNA sequencing data, showing that prioritized diverticular disease-associated genes are enriched for expression in colonic smooth muscle, fibroblasts, and interstitial cells of Cajal. In quantitative analysis of surgical specimens, we found a substantial reduction in the density of elastin present in the sigmoid colon in severe diverticulitis.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide association meta-analysis identifies 126 novel loci for diverticular disease and implicates connective tissue and colonic motility.\",\"authors\":\"Christopher J Neylan, Michael G Levin, Katherine Hartmann, Katherine Beigel, Sam Khodursky, John S DePaolo, Sarah Abramowitz, Emma E Furth, Robert O Heuckeroth, Scott M Damrauer, Lillias H Maguire\",\"doi\":\"10.1101/2025.03.27.25324777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diverticular disease is a common and morbid complex phenotype influenced by both innate and environmental risk factors. We performed the largest genome-wide association study meta-analysis for diverticular disease, identifying 126 novel loci. Employing multiple downstream analytic strategies, including tissue and pathway enrichment, statistical fine-mapping, allele-specific expression, protein quantitative trait loci and drug-target investigations, and linkage disequilibrium score regression, we prioritized causal genes and produced several lines of evidence linking diverticular disease to connective tissue biology and colonic motility. We substantiated these findings by integrating single-cell RNA sequencing data, showing that prioritized diverticular disease-associated genes are enriched for expression in colonic smooth muscle, fibroblasts, and interstitial cells of Cajal. In quantitative analysis of surgical specimens, we found a substantial reduction in the density of elastin present in the sigmoid colon in severe diverticulitis.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.03.27.25324777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.27.25324777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genome-wide association meta-analysis identifies 126 novel loci for diverticular disease and implicates connective tissue and colonic motility.
Diverticular disease is a common and morbid complex phenotype influenced by both innate and environmental risk factors. We performed the largest genome-wide association study meta-analysis for diverticular disease, identifying 126 novel loci. Employing multiple downstream analytic strategies, including tissue and pathway enrichment, statistical fine-mapping, allele-specific expression, protein quantitative trait loci and drug-target investigations, and linkage disequilibrium score regression, we prioritized causal genes and produced several lines of evidence linking diverticular disease to connective tissue biology and colonic motility. We substantiated these findings by integrating single-cell RNA sequencing data, showing that prioritized diverticular disease-associated genes are enriched for expression in colonic smooth muscle, fibroblasts, and interstitial cells of Cajal. In quantitative analysis of surgical specimens, we found a substantial reduction in the density of elastin present in the sigmoid colon in severe diverticulitis.