探索大型语言模型在门诊心理健康设置中自动安全计划评分的潜力。

Hayoung K Donnelly, Gregory K Brown, Kelly L Green, Ugurcan Vurgun, Sy Hwang, Emily Schriver, Michael Steinberg, Megan Reilly, Haitisha Mehta, Christa Labouliere, Maria Oquendo, David Mandell, Danielle L Mowery
{"title":"探索大型语言模型在门诊心理健康设置中自动安全计划评分的潜力。","authors":"Hayoung K Donnelly, Gregory K Brown, Kelly L Green, Ugurcan Vurgun, Sy Hwang, Emily Schriver, Michael Steinberg, Megan Reilly, Haitisha Mehta, Christa Labouliere, Maria Oquendo, David Mandell, Danielle L Mowery","doi":"10.1101/2025.03.26.25324610","DOIUrl":null,"url":null,"abstract":"<p><p>The Safety Planning Intervention (SPI) produces a plan to help manage patients' suicide risk. High-quality safety plans - that is, those with greater fidelity to the original program model - are more effective in reducing suicide risk. We developed the Safety Planning Intervention Fidelity Rater (SPIFR), an automated tool that assesses the quality of SPI using three large language models (LLMs)-GPT-4, LLaMA 3, and o3-mini. Using 266 deidentified SPI from outpatient mental health settings in New York, LLMs analyzed four key steps: warning signs, internal coping strategies, making environments safe, and reasons for living. We compared the predictive performance of the three LLMs, optimizing scoring systems, prompts, and parameters. Results showed that LLaMA 3 and o3-mini outperformed GPT-4, with different step-specific scoring systems recommended based on weighted F1-scores. These findings highlight LLMs' potential to provide clinicians with timely and accurate feedback on SPI practices, enhancing this evidence-based suicide prevention strategy.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974942/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential of Large Language Models for Automated Safety Plan Scoring in Outpatient Mental Health Settings.\",\"authors\":\"Hayoung K Donnelly, Gregory K Brown, Kelly L Green, Ugurcan Vurgun, Sy Hwang, Emily Schriver, Michael Steinberg, Megan Reilly, Haitisha Mehta, Christa Labouliere, Maria Oquendo, David Mandell, Danielle L Mowery\",\"doi\":\"10.1101/2025.03.26.25324610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Safety Planning Intervention (SPI) produces a plan to help manage patients' suicide risk. High-quality safety plans - that is, those with greater fidelity to the original program model - are more effective in reducing suicide risk. We developed the Safety Planning Intervention Fidelity Rater (SPIFR), an automated tool that assesses the quality of SPI using three large language models (LLMs)-GPT-4, LLaMA 3, and o3-mini. Using 266 deidentified SPI from outpatient mental health settings in New York, LLMs analyzed four key steps: warning signs, internal coping strategies, making environments safe, and reasons for living. We compared the predictive performance of the three LLMs, optimizing scoring systems, prompts, and parameters. Results showed that LLaMA 3 and o3-mini outperformed GPT-4, with different step-specific scoring systems recommended based on weighted F1-scores. These findings highlight LLMs' potential to provide clinicians with timely and accurate feedback on SPI practices, enhancing this evidence-based suicide prevention strategy.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974942/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.03.26.25324610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.26.25324610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

安全规划干预(SPI)会制定一项计划,帮助控制患者的自杀风险。高质量的安全计划(即更忠实于原始计划模式的计划)能更有效地降低自杀风险。我们开发了安全计划干预忠实度评定器(SPIFR),这是一种自动化工具,可使用三种大型语言模型(LLMs)--GPT-4、LLaMA 3 和 o3-mini--来评估 SPI 的质量。LLMs 使用来自纽约门诊心理健康机构的 266 份去标识化 SPI,分析了四个关键步骤:预警信号、内部应对策略、确保环境安全和生活理由。我们比较了三种 LLM 的预测性能,优化了评分系统、提示和参数。结果显示,LLaMA 3 和 o3-mini 的表现优于 GPT-4,根据加权 F1 分数推荐了不同的特定步骤评分系统。这些研究结果凸显了 LLMs 在为临床医生提供及时准确的 SPI 实践反馈方面的潜力,从而加强了这一以证据为基础的自杀预防策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Potential of Large Language Models for Automated Safety Plan Scoring in Outpatient Mental Health Settings.

The Safety Planning Intervention (SPI) produces a plan to help manage patients' suicide risk. High-quality safety plans - that is, those with greater fidelity to the original program model - are more effective in reducing suicide risk. We developed the Safety Planning Intervention Fidelity Rater (SPIFR), an automated tool that assesses the quality of SPI using three large language models (LLMs)-GPT-4, LLaMA 3, and o3-mini. Using 266 deidentified SPI from outpatient mental health settings in New York, LLMs analyzed four key steps: warning signs, internal coping strategies, making environments safe, and reasons for living. We compared the predictive performance of the three LLMs, optimizing scoring systems, prompts, and parameters. Results showed that LLaMA 3 and o3-mini outperformed GPT-4, with different step-specific scoring systems recommended based on weighted F1-scores. These findings highlight LLMs' potential to provide clinicians with timely and accurate feedback on SPI practices, enhancing this evidence-based suicide prevention strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信