预训练的大型语言模型的编码反映了人类心理特征的遗传结构。

Bohan Xu, Nick Obradovich, Wenjie Zheng, Robert Loughnan, Lucy Shao, Masaya Misaki, Wesley K Thompson, Martin Paulus, Chun Chieh Fan
{"title":"预训练的大型语言模型的编码反映了人类心理特征的遗传结构。","authors":"Bohan Xu, Nick Obradovich, Wenjie Zheng, Robert Loughnan, Lucy Shao, Masaya Misaki, Wesley K Thompson, Martin Paulus, Chun Chieh Fan","doi":"10.1101/2025.03.27.25324744","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in large language models (LLMs) have prompted a frenzy in utilizing them as universal translators for biomedical terms. However, the black box nature of LLMs has forced researchers to rely on artificially designed benchmarks without understanding what exactly LLMs encode. We demonstrate that pretrained LLMs can already explain up to 51% of the genetic correlation between items from a psychometrically-validated neuroticism questionnaire, without any fine-tuning. For psychiatric diagnoses, we found disorder names aligned better with genetic relationships than diagnostic descriptions. Our results indicate the pretrained LLMs have encodings mirroring genetic architectures. These findings highlight LLMs' potential for validating phenotypes, refining taxonomies, and integrating textual and genetic data in mental health research.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974973/pdf/","citationCount":"0","resultStr":"{\"title\":\"Encoding of pretrained large language models mirrors the genetic architectures of human psychological traits.\",\"authors\":\"Bohan Xu, Nick Obradovich, Wenjie Zheng, Robert Loughnan, Lucy Shao, Masaya Misaki, Wesley K Thompson, Martin Paulus, Chun Chieh Fan\",\"doi\":\"10.1101/2025.03.27.25324744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in large language models (LLMs) have prompted a frenzy in utilizing them as universal translators for biomedical terms. However, the black box nature of LLMs has forced researchers to rely on artificially designed benchmarks without understanding what exactly LLMs encode. We demonstrate that pretrained LLMs can already explain up to 51% of the genetic correlation between items from a psychometrically-validated neuroticism questionnaire, without any fine-tuning. For psychiatric diagnoses, we found disorder names aligned better with genetic relationships than diagnostic descriptions. Our results indicate the pretrained LLMs have encodings mirroring genetic architectures. These findings highlight LLMs' potential for validating phenotypes, refining taxonomies, and integrating textual and genetic data in mental health research.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974973/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.03.27.25324744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.27.25324744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)的最新进展促使人们将其作为生物医学术语的通用翻译工具。然而,法学硕士的黑箱特性迫使研究人员依赖于人为设计的基准,而不了解法学硕士究竟编码什么。我们证明,在没有任何微调的情况下,预先训练的法学硕士已经可以解释多达51%的心理测量学验证的神经质问卷项目之间的遗传相关性。对于精神病诊断,我们发现疾病名称与遗传关系比诊断描述更吻合。我们的研究结果表明,预训练的llm具有反映遗传结构的编码。这些发现突出了llm在心理健康研究中验证表型、完善分类以及整合文本和遗传数据方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Encoding of pretrained large language models mirrors the genetic architectures of human psychological traits.

Recent advances in large language models (LLMs) have prompted a frenzy in utilizing them as universal translators for biomedical terms. However, the black box nature of LLMs has forced researchers to rely on artificially designed benchmarks without understanding what exactly LLMs encode. We demonstrate that pretrained LLMs can already explain up to 51% of the genetic correlation between items from a psychometrically-validated neuroticism questionnaire, without any fine-tuning. For psychiatric diagnoses, we found disorder names aligned better with genetic relationships than diagnostic descriptions. Our results indicate the pretrained LLMs have encodings mirroring genetic architectures. These findings highlight LLMs' potential for validating phenotypes, refining taxonomies, and integrating textual and genetic data in mental health research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信