利用等离子体纳米镊子监测单个未修饰蛋白质的构象动力学。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Saaman Zargarbashi, Lei Xu, Christopher J Mellor, Mohsen Rahmani, Cuifeng Ying
{"title":"利用等离子体纳米镊子监测单个未修饰蛋白质的构象动力学。","authors":"Saaman Zargarbashi, Lei Xu, Christopher J Mellor, Mohsen Rahmani, Cuifeng Ying","doi":"10.3791/68093","DOIUrl":null,"url":null,"abstract":"<p><p>Current single-molecule techniques to characterize proteins typically require labels, tethers, or the use of non-native solution conditions. Such changes can alter protein biophysics and reduce the usefulness of the data acquired. Plasmonic nanotweezers is a technique that uses localized surface plasmon resonance (LSPR) on gold nanostructures to enhance the electric field within a confined hotspot region. This field enhancement allows for the use of low laser powers to trap single nanoparticles far smaller than conventional optical tweezers, down to only a few nanometers in diameter, such as single proteins. Trapping of single protein molecules within the hotspot region induces a shift in the local refractive index (nprotein > nwater), altering light scattering as a product of the molecule's polarisability, which is affected by its volume, shape anisotropy, and refractive index. An avalanche photodiode (APD) collects the subsequent changes in light scattering. These alterations can then be analyzed to determine changes in the trapped molecule, including its size, global conformation, and dynamics of conformational change over time. The incorporation of microfluidics within the system allows for controlled environmental changes and real-time monitoring of their subsequent effects on the molecule. In this protocol, we demonstrate the steps to trap single protein molecules, alter their environmental solution conditions, and monitor their corresponding conformational changes using a plasmonic nanotweezers system.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 217","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Conformational Dynamics of Single Unmodified Proteins using Plasmonic Nanotweezers.\",\"authors\":\"Saaman Zargarbashi, Lei Xu, Christopher J Mellor, Mohsen Rahmani, Cuifeng Ying\",\"doi\":\"10.3791/68093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current single-molecule techniques to characterize proteins typically require labels, tethers, or the use of non-native solution conditions. Such changes can alter protein biophysics and reduce the usefulness of the data acquired. Plasmonic nanotweezers is a technique that uses localized surface plasmon resonance (LSPR) on gold nanostructures to enhance the electric field within a confined hotspot region. This field enhancement allows for the use of low laser powers to trap single nanoparticles far smaller than conventional optical tweezers, down to only a few nanometers in diameter, such as single proteins. Trapping of single protein molecules within the hotspot region induces a shift in the local refractive index (nprotein > nwater), altering light scattering as a product of the molecule's polarisability, which is affected by its volume, shape anisotropy, and refractive index. An avalanche photodiode (APD) collects the subsequent changes in light scattering. These alterations can then be analyzed to determine changes in the trapped molecule, including its size, global conformation, and dynamics of conformational change over time. The incorporation of microfluidics within the system allows for controlled environmental changes and real-time monitoring of their subsequent effects on the molecule. In this protocol, we demonstrate the steps to trap single protein molecules, alter their environmental solution conditions, and monitor their corresponding conformational changes using a plasmonic nanotweezers system.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 217\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/68093\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68093","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前的单分子技术表征蛋白质通常需要标记、系链或使用非天然溶液条件。这种变化可以改变蛋白质生物物理学,降低所获得数据的有用性。等离子体纳米镊子是一种利用金纳米结构上的局部表面等离子体共振(LSPR)在受限热点区域内增强电场的技术。这种场增强允许使用低激光功率来捕获比传统光学镊子小得多的单个纳米粒子,小到直径只有几纳米,比如单个蛋白质。在热点区域捕获单个蛋白质分子会引起局部折射率(nprotein > nwater)的变化,从而改变光散射作为分子极化率的产物,而极化率受其体积、形状各向异性和折射率的影响。雪崩光电二极管(APD)收集光散射的后续变化。然后可以分析这些变化来确定被捕获分子的变化,包括其大小、整体构象和构象随时间变化的动态。微流体在系统内的结合允许控制环境变化和实时监测其对分子的后续影响。在本协议中,我们展示了捕获单个蛋白质分子的步骤,改变它们的环境溶液条件,并使用等离子体纳米镊子系统监测它们相应的构象变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring Conformational Dynamics of Single Unmodified Proteins using Plasmonic Nanotweezers.

Current single-molecule techniques to characterize proteins typically require labels, tethers, or the use of non-native solution conditions. Such changes can alter protein biophysics and reduce the usefulness of the data acquired. Plasmonic nanotweezers is a technique that uses localized surface plasmon resonance (LSPR) on gold nanostructures to enhance the electric field within a confined hotspot region. This field enhancement allows for the use of low laser powers to trap single nanoparticles far smaller than conventional optical tweezers, down to only a few nanometers in diameter, such as single proteins. Trapping of single protein molecules within the hotspot region induces a shift in the local refractive index (nprotein > nwater), altering light scattering as a product of the molecule's polarisability, which is affected by its volume, shape anisotropy, and refractive index. An avalanche photodiode (APD) collects the subsequent changes in light scattering. These alterations can then be analyzed to determine changes in the trapped molecule, including its size, global conformation, and dynamics of conformational change over time. The incorporation of microfluidics within the system allows for controlled environmental changes and real-time monitoring of their subsequent effects on the molecule. In this protocol, we demonstrate the steps to trap single protein molecules, alter their environmental solution conditions, and monitor their corresponding conformational changes using a plasmonic nanotweezers system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信