Iliano V Coutinho-Abreu, Fangying Chen, Hsing-Han Li, Noah H Rose, Omar S Akbari
{"title":"利用CRISPR-Cas9编辑黄热病蚊子埃及伊蚊的基因组。","authors":"Iliano V Coutinho-Abreu, Fangying Chen, Hsing-Han Li, Noah H Rose, Omar S Akbari","doi":"10.3791/67732","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of the clustered, regularly interspersed, short palindromic repeats (CRISPR)-Cas9 technology has revolutionized the genetic engineering field and opened the doors for precise genome editing in multiple species, including non-model organisms. In the mosquito Aedes aegypti, loss-of-function mutations and DNA insertions have been accomplished with this technology. Here, we describe a detailed protocol for genome editing through embryonic microinjection in the mosquito A. aegypti using the CRISPR-Cas9 technology, focusing on both the generation of gene knockout and knockin lines. In this protocol, quartz needles are filled with a mixture of guide RNA, recombinant Cas9, and a plasmid containing a DNA cassette encoding a gene for a fluorescent marker, if gene knockin is desired. Embryos at the preblastoderm stage are lined up onto a strip of double-sided sticky tape placed onto a coverslip, which is subsequently mounted onto a glass slide. With the help of a microinjector, the needles are inserted gently into the posterior end of the embryos and a small volume of the CRISPR mixture is dispensed. When the embryos are hatched, the larvae are checked under the fluorescent scope, and the pupae are sex-sorted and separated in different cages. Once the adults emerge, these are reciprocally crossed with wild-type individuals, blood-fed, and placed for egg laying. Once these eggs are hatched, the fluorescent larvae collected represent individuals with stable insertion of the DNA cassette into their genome. These larvae are then grown to the adult stage, outcrossed to wild-type individuals, and then further assessed through molecular techniques to confirm that the exact sequence of the DNA cassette is present at the desired site of the mosquito genome. Homozygous lines can also be obtained by following the provided pipeline of crossing schema and molecular screening of the mutations.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 217","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome Editing in the Yellow Fever Mosquito Aedes aegypti using CRISPR-Cas9.\",\"authors\":\"Iliano V Coutinho-Abreu, Fangying Chen, Hsing-Han Li, Noah H Rose, Omar S Akbari\",\"doi\":\"10.3791/67732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence of the clustered, regularly interspersed, short palindromic repeats (CRISPR)-Cas9 technology has revolutionized the genetic engineering field and opened the doors for precise genome editing in multiple species, including non-model organisms. In the mosquito Aedes aegypti, loss-of-function mutations and DNA insertions have been accomplished with this technology. Here, we describe a detailed protocol for genome editing through embryonic microinjection in the mosquito A. aegypti using the CRISPR-Cas9 technology, focusing on both the generation of gene knockout and knockin lines. In this protocol, quartz needles are filled with a mixture of guide RNA, recombinant Cas9, and a plasmid containing a DNA cassette encoding a gene for a fluorescent marker, if gene knockin is desired. Embryos at the preblastoderm stage are lined up onto a strip of double-sided sticky tape placed onto a coverslip, which is subsequently mounted onto a glass slide. With the help of a microinjector, the needles are inserted gently into the posterior end of the embryos and a small volume of the CRISPR mixture is dispensed. When the embryos are hatched, the larvae are checked under the fluorescent scope, and the pupae are sex-sorted and separated in different cages. Once the adults emerge, these are reciprocally crossed with wild-type individuals, blood-fed, and placed for egg laying. Once these eggs are hatched, the fluorescent larvae collected represent individuals with stable insertion of the DNA cassette into their genome. These larvae are then grown to the adult stage, outcrossed to wild-type individuals, and then further assessed through molecular techniques to confirm that the exact sequence of the DNA cassette is present at the desired site of the mosquito genome. Homozygous lines can also be obtained by following the provided pipeline of crossing schema and molecular screening of the mutations.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 217\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67732\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67732","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Genome Editing in the Yellow Fever Mosquito Aedes aegypti using CRISPR-Cas9.
The emergence of the clustered, regularly interspersed, short palindromic repeats (CRISPR)-Cas9 technology has revolutionized the genetic engineering field and opened the doors for precise genome editing in multiple species, including non-model organisms. In the mosquito Aedes aegypti, loss-of-function mutations and DNA insertions have been accomplished with this technology. Here, we describe a detailed protocol for genome editing through embryonic microinjection in the mosquito A. aegypti using the CRISPR-Cas9 technology, focusing on both the generation of gene knockout and knockin lines. In this protocol, quartz needles are filled with a mixture of guide RNA, recombinant Cas9, and a plasmid containing a DNA cassette encoding a gene for a fluorescent marker, if gene knockin is desired. Embryos at the preblastoderm stage are lined up onto a strip of double-sided sticky tape placed onto a coverslip, which is subsequently mounted onto a glass slide. With the help of a microinjector, the needles are inserted gently into the posterior end of the embryos and a small volume of the CRISPR mixture is dispensed. When the embryos are hatched, the larvae are checked under the fluorescent scope, and the pupae are sex-sorted and separated in different cages. Once the adults emerge, these are reciprocally crossed with wild-type individuals, blood-fed, and placed for egg laying. Once these eggs are hatched, the fluorescent larvae collected represent individuals with stable insertion of the DNA cassette into their genome. These larvae are then grown to the adult stage, outcrossed to wild-type individuals, and then further assessed through molecular techniques to confirm that the exact sequence of the DNA cassette is present at the desired site of the mosquito genome. Homozygous lines can also be obtained by following the provided pipeline of crossing schema and molecular screening of the mutations.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.