首个基于遥感和地理空间数据的全球169个特大城市城市开放空间产品。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Runyu Fan, Lizhe Wang, Zijian Xu, Hongyang Niu, Jiajun Chen, Zhaoying Zhou, Wenyue Li, Haoyu Wang, Yuyue Sun, Ruyi Feng
{"title":"首个基于遥感和地理空间数据的全球169个特大城市城市开放空间产品。","authors":"Runyu Fan, Lizhe Wang, Zijian Xu, Hongyang Niu, Jiajun Chen, Zhaoying Zhou, Wenyue Li, Haoyu Wang, Yuyue Sun, Ruyi Feng","doi":"10.1038/s41597-025-04924-x","DOIUrl":null,"url":null,"abstract":"<p><p>Urban open space (UOS) plays an important environmental role, especially in areas characterized by intense social and economic activity. However, the high interclass similarities, complex surroundings, and scale variations of UOS lead to unsatisfactory UOS mapping performance, and UOS mapping products for major cities around the world are lacking. To fill this gap, we used a deep learning-based method based on a tiny-manual annotation strategy and optical remote sensing imagery to produce a 1.19 m resolution UOS map of 169 megacities, namely the OpenspaceGlobal product. We generated the OpenspaceGlobal product with five urban open space categories. To obtain the final OpenspaceGlobal product, we processed over 8.5 TB of remote sensing images and nearly 90 million polygons in crowdsourced geospatial data. The validation results showed that the OpenspaceGlobal product had an overall accuracy of 79.13 % and a kappa coefficient of 73.47 %. The OpenspaceGlobal product can promote a better understanding of human-made space surfaces in major cities around the world.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"586"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The first urban open space product of global 169 megacities using remote sensing and geospatial data.\",\"authors\":\"Runyu Fan, Lizhe Wang, Zijian Xu, Hongyang Niu, Jiajun Chen, Zhaoying Zhou, Wenyue Li, Haoyu Wang, Yuyue Sun, Ruyi Feng\",\"doi\":\"10.1038/s41597-025-04924-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urban open space (UOS) plays an important environmental role, especially in areas characterized by intense social and economic activity. However, the high interclass similarities, complex surroundings, and scale variations of UOS lead to unsatisfactory UOS mapping performance, and UOS mapping products for major cities around the world are lacking. To fill this gap, we used a deep learning-based method based on a tiny-manual annotation strategy and optical remote sensing imagery to produce a 1.19 m resolution UOS map of 169 megacities, namely the OpenspaceGlobal product. We generated the OpenspaceGlobal product with five urban open space categories. To obtain the final OpenspaceGlobal product, we processed over 8.5 TB of remote sensing images and nearly 90 million polygons in crowdsourced geospatial data. The validation results showed that the OpenspaceGlobal product had an overall accuracy of 79.13 % and a kappa coefficient of 73.47 %. The OpenspaceGlobal product can promote a better understanding of human-made space surfaces in major cities around the world.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"586\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-04924-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04924-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

城市开放空间(UOS)发挥着重要的环境作用,特别是在社会和经济活动密集的地区。然而,由于UOS的类间相似性高、环境复杂、比例尺差异大,导致UOS制图性能不理想,全球主要城市的UOS制图产品缺乏。为了填补这一空白,我们使用基于微小手动标注策略和光学遥感图像的深度学习方法,生成了169个超大城市的1.19 m分辨率UOS地图,即OpenspaceGlobal产品。我们用五个城市开放空间类别生成了“全球开放空间”产品。为了获得最终的OpenspaceGlobal产品,我们处理了超过8.5 TB的遥感图像和近9000万个众包地理空间数据多边形。验证结果表明,OpenspaceGlobal产品的总体准确率为79.13%,kappa系数为73.47%。“开放空间全球”产品可以促进人们更好地了解世界主要城市的人造空间表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The first urban open space product of global 169 megacities using remote sensing and geospatial data.

Urban open space (UOS) plays an important environmental role, especially in areas characterized by intense social and economic activity. However, the high interclass similarities, complex surroundings, and scale variations of UOS lead to unsatisfactory UOS mapping performance, and UOS mapping products for major cities around the world are lacking. To fill this gap, we used a deep learning-based method based on a tiny-manual annotation strategy and optical remote sensing imagery to produce a 1.19 m resolution UOS map of 169 megacities, namely the OpenspaceGlobal product. We generated the OpenspaceGlobal product with five urban open space categories. To obtain the final OpenspaceGlobal product, we processed over 8.5 TB of remote sensing images and nearly 90 million polygons in crowdsourced geospatial data. The validation results showed that the OpenspaceGlobal product had an overall accuracy of 79.13 % and a kappa coefficient of 73.47 %. The OpenspaceGlobal product can promote a better understanding of human-made space surfaces in major cities around the world.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信