Andrew C Boggiano, Chad M Studvick, Sabyasachi Roy Chowdhury, Julie E Niklas, Haruko Tateyama, Hongwei Wu, Johannes E Leisen, Florian Kleemiss, Bess Vlaisavljevich, Ivan A Popov, Henry S La Pierre
{"title":"正态+5氧化态的镨。","authors":"Andrew C Boggiano, Chad M Studvick, Sabyasachi Roy Chowdhury, Julie E Niklas, Haruko Tateyama, Hongwei Wu, Johannes E Leisen, Florian Kleemiss, Bess Vlaisavljevich, Ivan A Popov, Henry S La Pierre","doi":"10.1038/s41557-025-01797-w","DOIUrl":null,"url":null,"abstract":"<p><p>Praseodymium in the +5 oxidation state is a long-sought connection between lanthanide, early-transition and actinide metal redox chemistries. Unique among the lanthanide series, evidence for molecular pentavalent praseodymium species has been observed in the gas phase and noble gas matrix isolation conditions. Here we report the low-temperature synthesis and characterization of a molecular praseodymium complex in the formal +5 oxidation state, [Pr<sup>5+</sup>(NP<sup>t</sup>Bu<sub>3</sub>)<sub>4</sub>][X<sup>-</sup>] (where <sup>t</sup>Bu = tert-butyl and X<sup>-</sup> = tetrakis(pentafluorophenyl)borate or hexafluorophosphate). Single-crystal X-ray diffraction, solution-state spectroscopic, solution magnetometric, density functional theory and multireference wavefunction-based methods indicate a highly multiconfigurational singlet ground state. An inverted ligand field drives this unique electronic structure, which establishes a critical link in understanding the bonding of high-valent metal complexes across the periodic table.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":" ","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Praseodymium in the formal +5 oxidation state.\",\"authors\":\"Andrew C Boggiano, Chad M Studvick, Sabyasachi Roy Chowdhury, Julie E Niklas, Haruko Tateyama, Hongwei Wu, Johannes E Leisen, Florian Kleemiss, Bess Vlaisavljevich, Ivan A Popov, Henry S La Pierre\",\"doi\":\"10.1038/s41557-025-01797-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Praseodymium in the +5 oxidation state is a long-sought connection between lanthanide, early-transition and actinide metal redox chemistries. Unique among the lanthanide series, evidence for molecular pentavalent praseodymium species has been observed in the gas phase and noble gas matrix isolation conditions. Here we report the low-temperature synthesis and characterization of a molecular praseodymium complex in the formal +5 oxidation state, [Pr<sup>5+</sup>(NP<sup>t</sup>Bu<sub>3</sub>)<sub>4</sub>][X<sup>-</sup>] (where <sup>t</sup>Bu = tert-butyl and X<sup>-</sup> = tetrakis(pentafluorophenyl)borate or hexafluorophosphate). Single-crystal X-ray diffraction, solution-state spectroscopic, solution magnetometric, density functional theory and multireference wavefunction-based methods indicate a highly multiconfigurational singlet ground state. An inverted ligand field drives this unique electronic structure, which establishes a critical link in understanding the bonding of high-valent metal complexes across the periodic table.</p>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-025-01797-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01797-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Praseodymium in the +5 oxidation state is a long-sought connection between lanthanide, early-transition and actinide metal redox chemistries. Unique among the lanthanide series, evidence for molecular pentavalent praseodymium species has been observed in the gas phase and noble gas matrix isolation conditions. Here we report the low-temperature synthesis and characterization of a molecular praseodymium complex in the formal +5 oxidation state, [Pr5+(NPtBu3)4][X-] (where tBu = tert-butyl and X- = tetrakis(pentafluorophenyl)borate or hexafluorophosphate). Single-crystal X-ray diffraction, solution-state spectroscopic, solution magnetometric, density functional theory and multireference wavefunction-based methods indicate a highly multiconfigurational singlet ground state. An inverted ligand field drives this unique electronic structure, which establishes a critical link in understanding the bonding of high-valent metal complexes across the periodic table.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.