Priscila Heredia Reto, Rosita Castillo Rogel, Gabriela Palomino Lucano, Jean Louis Falen, Ricardo David Avellan Laguno, Karina Zapata Vidaurre, Marisol Saavedra Febre, Gabriel Reyes Calle, Juan Zingg Rosell, Jimmy Lopez Perez, José Morán Rosillo, Eric Mialhe, Benoit Diringer
{"title":"评估露天采矿中的微生物多样性:操作和恢复阶段土壤和矿坑微生物群的元条形码分析。","authors":"Priscila Heredia Reto, Rosita Castillo Rogel, Gabriela Palomino Lucano, Jean Louis Falen, Ricardo David Avellan Laguno, Karina Zapata Vidaurre, Marisol Saavedra Febre, Gabriel Reyes Calle, Juan Zingg Rosell, Jimmy Lopez Perez, José Morán Rosillo, Eric Mialhe, Benoit Diringer","doi":"10.1371/journal.pone.0320923","DOIUrl":null,"url":null,"abstract":"<p><p>Mine closure operations aim to restore the ecosystem to a near-original state. Microorganisms are indispensable for soil equilibrium and restoration. Metabarcoding was employed to characterize the bacterial and fungal composition in pristine soils, stockpiled soils (topsoils), enriched stockpiled soils (technosoils), enriched and revegetated soils (revegetated technosoils), and pit ecosystems in an open pit gold mine. Chao1 analysis revealed highest richness in pristine and topsoils, followed by technosoils (-17.5%) and pits (-63%). Bacterial diversity surpassed fungal diversity (-40%) in soil samples, but fungal OTUs were more abundant in pit samples (+73.4%). The findings identified the dominant microbial communities and conducted a comparative analysis of the shared microbiota. Dominant genera differed notably between pristine, topsoil, and technosoil samples for bacteria and fungi. The ecological indices' results indicated that the pristine soil microbial communities were distinct from those in the topsoils, revealing significant alterations during the stockpiling process. The revegetated technosoil showed more similarity to the pristine and topsoil samples than to the freshly prepared technosoil, suggesting that microbial restoration is an ongoing phenomenon. Microbial restoration analysis revealed that Bacterial communities recover faster than fungal communities highlighting the potential of managing technosoil physicochemical parameters to enhance microbial recovery similar to those found in pristine soils. Runoff water contribute to this rebalancing by transporting microorganisms between ecosystem. All pit samples exhibited significant differences in their microbial composition, with moisture and rock composition representing the primary axes of dissimilarity. The greater community complexity observed in soils is related to the availability of nutrients, physicochemical variations, and the possibility of interaction with other microbes. Pits represent extreme ecosystems that limit the growth of most microorganisms. The presented research provides a scientific basis for future restoration strategies to improve microbial diversity and ecosystem resilience in altered landscapes.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0320923"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975129/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing microbial diversity in open-pit mining: Metabarcoding analysis of soil and pit microbiota across operational and restoration stages.\",\"authors\":\"Priscila Heredia Reto, Rosita Castillo Rogel, Gabriela Palomino Lucano, Jean Louis Falen, Ricardo David Avellan Laguno, Karina Zapata Vidaurre, Marisol Saavedra Febre, Gabriel Reyes Calle, Juan Zingg Rosell, Jimmy Lopez Perez, José Morán Rosillo, Eric Mialhe, Benoit Diringer\",\"doi\":\"10.1371/journal.pone.0320923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mine closure operations aim to restore the ecosystem to a near-original state. Microorganisms are indispensable for soil equilibrium and restoration. Metabarcoding was employed to characterize the bacterial and fungal composition in pristine soils, stockpiled soils (topsoils), enriched stockpiled soils (technosoils), enriched and revegetated soils (revegetated technosoils), and pit ecosystems in an open pit gold mine. Chao1 analysis revealed highest richness in pristine and topsoils, followed by technosoils (-17.5%) and pits (-63%). Bacterial diversity surpassed fungal diversity (-40%) in soil samples, but fungal OTUs were more abundant in pit samples (+73.4%). The findings identified the dominant microbial communities and conducted a comparative analysis of the shared microbiota. Dominant genera differed notably between pristine, topsoil, and technosoil samples for bacteria and fungi. The ecological indices' results indicated that the pristine soil microbial communities were distinct from those in the topsoils, revealing significant alterations during the stockpiling process. The revegetated technosoil showed more similarity to the pristine and topsoil samples than to the freshly prepared technosoil, suggesting that microbial restoration is an ongoing phenomenon. Microbial restoration analysis revealed that Bacterial communities recover faster than fungal communities highlighting the potential of managing technosoil physicochemical parameters to enhance microbial recovery similar to those found in pristine soils. Runoff water contribute to this rebalancing by transporting microorganisms between ecosystem. All pit samples exhibited significant differences in their microbial composition, with moisture and rock composition representing the primary axes of dissimilarity. The greater community complexity observed in soils is related to the availability of nutrients, physicochemical variations, and the possibility of interaction with other microbes. Pits represent extreme ecosystems that limit the growth of most microorganisms. The presented research provides a scientific basis for future restoration strategies to improve microbial diversity and ecosystem resilience in altered landscapes.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 4\",\"pages\":\"e0320923\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975129/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0320923\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320923","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Assessing microbial diversity in open-pit mining: Metabarcoding analysis of soil and pit microbiota across operational and restoration stages.
Mine closure operations aim to restore the ecosystem to a near-original state. Microorganisms are indispensable for soil equilibrium and restoration. Metabarcoding was employed to characterize the bacterial and fungal composition in pristine soils, stockpiled soils (topsoils), enriched stockpiled soils (technosoils), enriched and revegetated soils (revegetated technosoils), and pit ecosystems in an open pit gold mine. Chao1 analysis revealed highest richness in pristine and topsoils, followed by technosoils (-17.5%) and pits (-63%). Bacterial diversity surpassed fungal diversity (-40%) in soil samples, but fungal OTUs were more abundant in pit samples (+73.4%). The findings identified the dominant microbial communities and conducted a comparative analysis of the shared microbiota. Dominant genera differed notably between pristine, topsoil, and technosoil samples for bacteria and fungi. The ecological indices' results indicated that the pristine soil microbial communities were distinct from those in the topsoils, revealing significant alterations during the stockpiling process. The revegetated technosoil showed more similarity to the pristine and topsoil samples than to the freshly prepared technosoil, suggesting that microbial restoration is an ongoing phenomenon. Microbial restoration analysis revealed that Bacterial communities recover faster than fungal communities highlighting the potential of managing technosoil physicochemical parameters to enhance microbial recovery similar to those found in pristine soils. Runoff water contribute to this rebalancing by transporting microorganisms between ecosystem. All pit samples exhibited significant differences in their microbial composition, with moisture and rock composition representing the primary axes of dissimilarity. The greater community complexity observed in soils is related to the availability of nutrients, physicochemical variations, and the possibility of interaction with other microbes. Pits represent extreme ecosystems that limit the growth of most microorganisms. The presented research provides a scientific basis for future restoration strategies to improve microbial diversity and ecosystem resilience in altered landscapes.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage