{"title":"不充分微波消融对肺癌复发的影响。","authors":"Peng Yan, Ruimei Yuan, Zheng Li, Meili Sun","doi":"10.2147/OTT.S508577","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Insufficient ablation is a significant factor contributing to the recurrence of non-small cell lung cancer (NSCLC), and it is of great significance to explore the protein expression profile of lung cancer cells after insufficient ablation.</p><p><strong>Methods: </strong>We establish an insufficient microwave ablation model of lung cancer xenograft in mice, identify differentially expressed proteins (DEPs) and involved signaling pathways through proteomic sequencing, and confirm proteins expression via immunohistochemistry (IHC). Utilizing The Cancer Genome Atlas (TCGA) dataset, we investigate proteins associated with human lung cancer prognosis.</p><p><strong>Results: </strong>Proteomic sequencing results reveal that 99 proteins exhibited differential expression levels. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that the DEPs are significantly enriched in metabolic processes. Several DEPs are identified and subsequently confirmed through immunohistochemistry (IHC). Among these proteins, CTP synthase 1 (CTPS1) and Thymidylate synthetase (TYMS), both of which play roles in nucleotide metabolism, are found to be significantly associated with the survival outcomes of patients with lung cancer.</p><p><strong>Conclusion: </strong>Insufficient ablation can cause alterations in nucleotide metabolism, potentially leading to recurrence and metastasis.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"18 ","pages":"467-479"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974570/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring Protein Expression Profiles in Lung Cancer Insufficient Microwave Ablation: Implications for Recurrence.\",\"authors\":\"Peng Yan, Ruimei Yuan, Zheng Li, Meili Sun\",\"doi\":\"10.2147/OTT.S508577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Insufficient ablation is a significant factor contributing to the recurrence of non-small cell lung cancer (NSCLC), and it is of great significance to explore the protein expression profile of lung cancer cells after insufficient ablation.</p><p><strong>Methods: </strong>We establish an insufficient microwave ablation model of lung cancer xenograft in mice, identify differentially expressed proteins (DEPs) and involved signaling pathways through proteomic sequencing, and confirm proteins expression via immunohistochemistry (IHC). Utilizing The Cancer Genome Atlas (TCGA) dataset, we investigate proteins associated with human lung cancer prognosis.</p><p><strong>Results: </strong>Proteomic sequencing results reveal that 99 proteins exhibited differential expression levels. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that the DEPs are significantly enriched in metabolic processes. Several DEPs are identified and subsequently confirmed through immunohistochemistry (IHC). Among these proteins, CTP synthase 1 (CTPS1) and Thymidylate synthetase (TYMS), both of which play roles in nucleotide metabolism, are found to be significantly associated with the survival outcomes of patients with lung cancer.</p><p><strong>Conclusion: </strong>Insufficient ablation can cause alterations in nucleotide metabolism, potentially leading to recurrence and metastasis.</p>\",\"PeriodicalId\":19534,\"journal\":{\"name\":\"OncoTargets and therapy\",\"volume\":\"18 \",\"pages\":\"467-479\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OncoTargets and therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/OTT.S508577\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S508577","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exploring Protein Expression Profiles in Lung Cancer Insufficient Microwave Ablation: Implications for Recurrence.
Background: Insufficient ablation is a significant factor contributing to the recurrence of non-small cell lung cancer (NSCLC), and it is of great significance to explore the protein expression profile of lung cancer cells after insufficient ablation.
Methods: We establish an insufficient microwave ablation model of lung cancer xenograft in mice, identify differentially expressed proteins (DEPs) and involved signaling pathways through proteomic sequencing, and confirm proteins expression via immunohistochemistry (IHC). Utilizing The Cancer Genome Atlas (TCGA) dataset, we investigate proteins associated with human lung cancer prognosis.
Results: Proteomic sequencing results reveal that 99 proteins exhibited differential expression levels. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that the DEPs are significantly enriched in metabolic processes. Several DEPs are identified and subsequently confirmed through immunohistochemistry (IHC). Among these proteins, CTP synthase 1 (CTPS1) and Thymidylate synthetase (TYMS), both of which play roles in nucleotide metabolism, are found to be significantly associated with the survival outcomes of patients with lung cancer.
Conclusion: Insufficient ablation can cause alterations in nucleotide metabolism, potentially leading to recurrence and metastasis.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.