用 AAV 表达血脑屏障穿透形式的 β-半乳糖苷酶可使小鼠体内的 GM1 神经节苷脂储存正常化。

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Saki Kondo Matsushima, Yohta Shimada, Masafumi Kinoshita, Takashi Nagashima, Shinichiro Okamoto, Sayoko Iizuka, Haruna Takagi, Shunsuke Iizuka, Takashi Higuchi, Hiroyuki Hioki, Ayako M Watabe, Hiroyuki Sonoda, Toya Ohashi, Hiroshi Kobayashi
{"title":"用 AAV 表达血脑屏障穿透形式的 β-半乳糖苷酶可使小鼠体内的 GM1 神经节苷脂储存正常化。","authors":"Saki Kondo Matsushima, Yohta Shimada, Masafumi Kinoshita, Takashi Nagashima, Shinichiro Okamoto, Sayoko Iizuka, Haruna Takagi, Shunsuke Iizuka, Takashi Higuchi, Hiroyuki Hioki, Ayako M Watabe, Hiroyuki Sonoda, Toya Ohashi, Hiroshi Kobayashi","doi":"10.1172/JCI180724","DOIUrl":null,"url":null,"abstract":"<p><p>GM1 gangliosidosis is a lysosomal storage disorder (LSD) and caused by genetic defects in the lysosomal β-galactosidase (β-gal). The primary substrate of the β-gal is GM1 ganglioside (GM1), a sialylated glycosphingolipid abundant in the central nervous system (CNS). β-gal deficiency causes GM1 to accumulate in neural cells leading to a rapid decline in psychomotor functions, seizures, and premature death. There is currently no therapy available. Although enzyme replacement therapy (ERT) has been approved for other LSDs, its effects on the CNS are limited owing to the blood-brain barrier (BBB). Here, we assessed the therapeutic efficacy of a systemic infusion of an AAV vector carrying a gene expressing a BBB-penetrable enzyme under the control of a liver-specific promotor in GM1 gangliosidosis model mice. The BBB-penetrable enzyme consisted of the variable region of the anti-transferrin receptor-antibody fused with β-gal. The BBB-penetrable enzyme was only produced in the liver and secreted into the blood, which was efficiently distributed to various organs, including the brain. GM1 accumulation in the CNS was completely normalised, with improved neurological functions and animal survival. This therapeutic approach is expected to be applied for the treatment of several hereditary neurological diseases with CNS involvement.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AAV expression of a blood-brain barrier-penetrating form of β-galactosidase normalises GM1 ganglioside storage in mice.\",\"authors\":\"Saki Kondo Matsushima, Yohta Shimada, Masafumi Kinoshita, Takashi Nagashima, Shinichiro Okamoto, Sayoko Iizuka, Haruna Takagi, Shunsuke Iizuka, Takashi Higuchi, Hiroyuki Hioki, Ayako M Watabe, Hiroyuki Sonoda, Toya Ohashi, Hiroshi Kobayashi\",\"doi\":\"10.1172/JCI180724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>GM1 gangliosidosis is a lysosomal storage disorder (LSD) and caused by genetic defects in the lysosomal β-galactosidase (β-gal). The primary substrate of the β-gal is GM1 ganglioside (GM1), a sialylated glycosphingolipid abundant in the central nervous system (CNS). β-gal deficiency causes GM1 to accumulate in neural cells leading to a rapid decline in psychomotor functions, seizures, and premature death. There is currently no therapy available. Although enzyme replacement therapy (ERT) has been approved for other LSDs, its effects on the CNS are limited owing to the blood-brain barrier (BBB). Here, we assessed the therapeutic efficacy of a systemic infusion of an AAV vector carrying a gene expressing a BBB-penetrable enzyme under the control of a liver-specific promotor in GM1 gangliosidosis model mice. The BBB-penetrable enzyme consisted of the variable region of the anti-transferrin receptor-antibody fused with β-gal. The BBB-penetrable enzyme was only produced in the liver and secreted into the blood, which was efficiently distributed to various organs, including the brain. GM1 accumulation in the CNS was completely normalised, with improved neurological functions and animal survival. This therapeutic approach is expected to be applied for the treatment of several hereditary neurological diseases with CNS involvement.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI180724\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI180724","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

GM1神经节苷脂病是一种溶酶体贮积症(LSD),由溶酶体β-半乳糖苷酶(β-gal)的基因缺陷引起。β-gal的主要底物是GM1神经节苷脂(GM1),这是一种在中枢神经系统(CNS)中含量丰富的苷元化糖磷脂。缺乏β-gal会导致GM1在神经细胞中蓄积,从而导致精神运动功能迅速下降、癫痫发作和过早死亡。目前尚无治疗方法。虽然酶替代疗法(ERT)已被批准用于其他 LSDs,但由于血脑屏障(BBB)的影响,其对中枢神经系统的作用有限。在这里,我们评估了全身输注携带有在肝脏特异性启动子控制下表达BBB可穿透酶基因的AAV载体对GM1神经节苷脂病模型小鼠的治疗效果。这种可穿透BBB的酶由抗转铁蛋白受体抗体的可变区与β-gal融合组成。 这种可穿透BBB的酶只在肝脏中产生,并分泌到血液中,有效地分布到包括大脑在内的各个器官。中枢神经系统中的 GM1 积累完全恢复正常,神经功能和动物存活率也得到改善。这种治疗方法有望用于治疗多种累及中枢神经系统的遗传性神经疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AAV expression of a blood-brain barrier-penetrating form of β-galactosidase normalises GM1 ganglioside storage in mice.

GM1 gangliosidosis is a lysosomal storage disorder (LSD) and caused by genetic defects in the lysosomal β-galactosidase (β-gal). The primary substrate of the β-gal is GM1 ganglioside (GM1), a sialylated glycosphingolipid abundant in the central nervous system (CNS). β-gal deficiency causes GM1 to accumulate in neural cells leading to a rapid decline in psychomotor functions, seizures, and premature death. There is currently no therapy available. Although enzyme replacement therapy (ERT) has been approved for other LSDs, its effects on the CNS are limited owing to the blood-brain barrier (BBB). Here, we assessed the therapeutic efficacy of a systemic infusion of an AAV vector carrying a gene expressing a BBB-penetrable enzyme under the control of a liver-specific promotor in GM1 gangliosidosis model mice. The BBB-penetrable enzyme consisted of the variable region of the anti-transferrin receptor-antibody fused with β-gal. The BBB-penetrable enzyme was only produced in the liver and secreted into the blood, which was efficiently distributed to various organs, including the brain. GM1 accumulation in the CNS was completely normalised, with improved neurological functions and animal survival. This therapeutic approach is expected to be applied for the treatment of several hereditary neurological diseases with CNS involvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信