磁共振空化动力学编码(MR-CaDE)成像。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Dinank Gupta, Tarana P Kaovasia, Steven P Allen, Jon-Fredrik Nielsen, Timothy L Hall, Zhen Xu, Douglas C Noll
{"title":"磁共振空化动力学编码(MR-CaDE)成像。","authors":"Dinank Gupta, Tarana P Kaovasia, Steven P Allen, Jon-Fredrik Nielsen, Timothy L Hall, Zhen Xu, Douglas C Noll","doi":"10.1002/mrm.30517","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop methods for dynamic cavitation monitoring of a non-invasive ultrasound mechanical ablation technology (histotripsy) in the brain and test its feasibility for treatment monitoring in ex-vivo brain in a human MRI scanner.</p><p><strong>Methods: </strong>A Gradient Echo (GRE) pulse sequence was modified with a bipolar gradient to perform MR-Cavitation Dynamics Encoded (MR-CaDE) imaging. Cavitation generated by histotripsy sonication was monitored using MR-CaDE imaging in ex-vivo bovine brain tissues on a <math> <semantics><mrow><mn>3</mn> <mi>T</mi></mrow> <annotation>$$ 3\\mathrm{T} $$</annotation></semantics> </math> human MRI scanner. Bipolar gradients with a b-value of <math> <semantics><mrow><mtext>b</mtext> <mo>=</mo> <mn>50</mn> <mi>s</mi> <mo>/</mo> <msup><mrow><mtext>mm</mtext></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ \\mathrm{b}=50\\mathrm{s}/{\\mathrm{mm}}^2 $$</annotation></semantics> </math> and smaller were used while a trigger was sent from the MR scanner to the histotripsy driving electronics. MR acquisition was performed with TE/TR: <math> <semantics><mrow><mn>19</mn> <mspace></mspace> <mtext>ms</mtext> <mo>/</mo> <mn>100</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ 19\\kern.2em \\mathrm{ms}/100\\kern.2em \\mathrm{ms} $$</annotation></semantics> </math> with 1.5-cycle histotripsy sonications at 1 pulse/TR. Feasibility of treatment monitoring was also evaluated for histotripsy through an excised human skull.</p><p><strong>Results: </strong>The MR-CaDE imaging pulse sequence was used to perform treatment monitoring of cavitation generated by histotripsy with a temporal resolution of <math> <semantics><mrow><mn>0.5</mn> <mspace></mspace> <mtext>s</mtext></mrow> <annotation>$$ 0.5\\kern.2em \\mathrm{s} $$</annotation></semantics> </math> with a spiral readout. A decrease in the image magnitude and an increase in the phase was observed with an increasing number of histotripsy sonications. The magnitude image exhibited a peak loss of 50%, and the phase image exhibited a maximum increase of 0.64rad compared to the baseline signal level in the brain. The peak signal magnitude change aligned well with the array's geometrical focus, and the post-histotripsy lesion visualized on a DWI ( <math> <semantics><mrow><mtext>b</mtext> <mo>=</mo> <mn>1000</mn> <mspace></mspace> <mtext>s/mm</mtext> <msup><mrow><mo> </mo></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ \\mathrm{b}=1000\\kern.2em \\mathrm{s}/{\\mathrm{mm}}^2 $$</annotation></semantics> </math> ) scan with an alignment error of <math> <semantics><mrow><mn>0.71</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 0.71\\kern.2em \\mathrm{mm} $$</annotation></semantics> </math> and <math> <semantics><mrow><mn>1.25</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 1.25\\kern.2em \\mathrm{mm} $$</annotation></semantics> </math> in the transverse and longitudinal axes, respectively. The area of the histotripsy response using the spiral readout in the magnitude and phase images were <math> <semantics><mrow><mn>3</mn> <mo>.</mo> <mn>38</mn> <mspace></mspace> <mtext>mm</mtext> <mo>×</mo> <mn>5</mn> <mo>.</mo> <mn>62</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 3.38\\kern0.3em \\mathrm{mm}\\times 5.62\\kern0.3em \\mathrm{mm} $$</annotation></semantics> </math> and <math> <semantics><mrow><mn>10</mn> <mo>.</mo> <mn>92</mn> <mspace></mspace> <mtext>mm</mtext> <mo>×</mo> <mn>20</mn> <mo>.</mo> <mn>28</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 10.92\\kern0.3em \\mathrm{mm}\\times 20.28\\kern0.3em \\mathrm{mm} $$</annotation></semantics> </math> , respectively.</p><p><strong>Conclusion: </strong>This work demonstrated the feasibility of the MR-CaDE pulse sequence, which can be used to monitor cavitation events in the brain generated by histotripsy.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MR-Cavitation Dynamics Encoded (MR-CaDE) imaging.\",\"authors\":\"Dinank Gupta, Tarana P Kaovasia, Steven P Allen, Jon-Fredrik Nielsen, Timothy L Hall, Zhen Xu, Douglas C Noll\",\"doi\":\"10.1002/mrm.30517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop methods for dynamic cavitation monitoring of a non-invasive ultrasound mechanical ablation technology (histotripsy) in the brain and test its feasibility for treatment monitoring in ex-vivo brain in a human MRI scanner.</p><p><strong>Methods: </strong>A Gradient Echo (GRE) pulse sequence was modified with a bipolar gradient to perform MR-Cavitation Dynamics Encoded (MR-CaDE) imaging. Cavitation generated by histotripsy sonication was monitored using MR-CaDE imaging in ex-vivo bovine brain tissues on a <math> <semantics><mrow><mn>3</mn> <mi>T</mi></mrow> <annotation>$$ 3\\\\mathrm{T} $$</annotation></semantics> </math> human MRI scanner. Bipolar gradients with a b-value of <math> <semantics><mrow><mtext>b</mtext> <mo>=</mo> <mn>50</mn> <mi>s</mi> <mo>/</mo> <msup><mrow><mtext>mm</mtext></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ \\\\mathrm{b}=50\\\\mathrm{s}/{\\\\mathrm{mm}}^2 $$</annotation></semantics> </math> and smaller were used while a trigger was sent from the MR scanner to the histotripsy driving electronics. MR acquisition was performed with TE/TR: <math> <semantics><mrow><mn>19</mn> <mspace></mspace> <mtext>ms</mtext> <mo>/</mo> <mn>100</mn> <mspace></mspace> <mtext>ms</mtext></mrow> <annotation>$$ 19\\\\kern.2em \\\\mathrm{ms}/100\\\\kern.2em \\\\mathrm{ms} $$</annotation></semantics> </math> with 1.5-cycle histotripsy sonications at 1 pulse/TR. Feasibility of treatment monitoring was also evaluated for histotripsy through an excised human skull.</p><p><strong>Results: </strong>The MR-CaDE imaging pulse sequence was used to perform treatment monitoring of cavitation generated by histotripsy with a temporal resolution of <math> <semantics><mrow><mn>0.5</mn> <mspace></mspace> <mtext>s</mtext></mrow> <annotation>$$ 0.5\\\\kern.2em \\\\mathrm{s} $$</annotation></semantics> </math> with a spiral readout. A decrease in the image magnitude and an increase in the phase was observed with an increasing number of histotripsy sonications. The magnitude image exhibited a peak loss of 50%, and the phase image exhibited a maximum increase of 0.64rad compared to the baseline signal level in the brain. The peak signal magnitude change aligned well with the array's geometrical focus, and the post-histotripsy lesion visualized on a DWI ( <math> <semantics><mrow><mtext>b</mtext> <mo>=</mo> <mn>1000</mn> <mspace></mspace> <mtext>s/mm</mtext> <msup><mrow><mo> </mo></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <annotation>$$ \\\\mathrm{b}=1000\\\\kern.2em \\\\mathrm{s}/{\\\\mathrm{mm}}^2 $$</annotation></semantics> </math> ) scan with an alignment error of <math> <semantics><mrow><mn>0.71</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 0.71\\\\kern.2em \\\\mathrm{mm} $$</annotation></semantics> </math> and <math> <semantics><mrow><mn>1.25</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 1.25\\\\kern.2em \\\\mathrm{mm} $$</annotation></semantics> </math> in the transverse and longitudinal axes, respectively. The area of the histotripsy response using the spiral readout in the magnitude and phase images were <math> <semantics><mrow><mn>3</mn> <mo>.</mo> <mn>38</mn> <mspace></mspace> <mtext>mm</mtext> <mo>×</mo> <mn>5</mn> <mo>.</mo> <mn>62</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 3.38\\\\kern0.3em \\\\mathrm{mm}\\\\times 5.62\\\\kern0.3em \\\\mathrm{mm} $$</annotation></semantics> </math> and <math> <semantics><mrow><mn>10</mn> <mo>.</mo> <mn>92</mn> <mspace></mspace> <mtext>mm</mtext> <mo>×</mo> <mn>20</mn> <mo>.</mo> <mn>28</mn> <mspace></mspace> <mtext>mm</mtext></mrow> <annotation>$$ 10.92\\\\kern0.3em \\\\mathrm{mm}\\\\times 20.28\\\\kern0.3em \\\\mathrm{mm} $$</annotation></semantics> </math> , respectively.</p><p><strong>Conclusion: </strong>This work demonstrated the feasibility of the MR-CaDE pulse sequence, which can be used to monitor cavitation events in the brain generated by histotripsy.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30517\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30517","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究无创超声机械消融技术(组织切片法)在脑内的动态空化监测方法,并验证其在人体MRI离体脑内治疗监测的可行性。方法:将梯度回波(GRE)脉冲序列用双极梯度进行修饰,进行磁共振空化动力学编码(MR-CaDE)成像。在3 T $$ 3\mathrm{T} $$人体MRI扫描仪上对离体牛脑组织进行MRI - cade成像,监测组织分层超声产生的空化现象。使用b值为b = 50 s / mm2 $$ \mathrm{b}=50\mathrm{s}/{\mathrm{mm}}^2 $$或更小的双极梯度,同时从MR扫描仪发送触发器到历史驱动电子设备。MR采集采用TE/TR: 19 ms / 100 ms $$ 19\kern.2em \mathrm{ms}/100\kern.2em \mathrm{ms} $$,以1脉冲/TR进行1.5周期的组织分层超声。治疗监测的可行性也通过切除的人颅骨进行了评估。结果:采用MR-CaDE成像脉冲序列对组织穿刺产生的空化进行治疗监测,时间分辨率为0.5 s $$ 0.5\kern.2em \mathrm{s} $$,螺旋读数。随着组织分层超声次数的增加,观察到图像幅度的降低和相位的增加。星等图像显示峰值损失为50%, and the phase image exhibited a maximum increase of 0.64rad compared to the baseline signal level in the brain. The peak signal magnitude change aligned well with the array's geometrical focus, and the post-histotripsy lesion visualized on a DWI ( b = 1000 s/mm   2 $$ \mathrm{b}=1000\kern.2em \mathrm{s}/{\mathrm{mm}}^2 $$ ) scan with an alignment error of 0.71 mm $$ 0.71\kern.2em \mathrm{mm} $$ and 1.25 mm $$ 1.25\kern.2em \mathrm{mm} $$ in the transverse and longitudinal axes, respectively. The area of the histotripsy response using the spiral readout in the magnitude and phase images were 3 . 38 mm × 5 . 62 mm $$ 3.38\kern0.3em \mathrm{mm}\times 5.62\kern0.3em \mathrm{mm} $$ and 10 . 92 mm × 20 . 28 mm $$ 10.92\kern0.3em \mathrm{mm}\times 20.28\kern0.3em \mathrm{mm} $$ , respectively.Conclusion: This work demonstrated the feasibility of the MR-CaDE pulse sequence, which can be used to monitor cavitation events in the brain generated by histotripsy.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MR-Cavitation Dynamics Encoded (MR-CaDE) imaging.

Purpose: To develop methods for dynamic cavitation monitoring of a non-invasive ultrasound mechanical ablation technology (histotripsy) in the brain and test its feasibility for treatment monitoring in ex-vivo brain in a human MRI scanner.

Methods: A Gradient Echo (GRE) pulse sequence was modified with a bipolar gradient to perform MR-Cavitation Dynamics Encoded (MR-CaDE) imaging. Cavitation generated by histotripsy sonication was monitored using MR-CaDE imaging in ex-vivo bovine brain tissues on a 3 T $$ 3\mathrm{T} $$ human MRI scanner. Bipolar gradients with a b-value of b = 50 s / mm 2 $$ \mathrm{b}=50\mathrm{s}/{\mathrm{mm}}^2 $$ and smaller were used while a trigger was sent from the MR scanner to the histotripsy driving electronics. MR acquisition was performed with TE/TR: 19 ms / 100 ms $$ 19\kern.2em \mathrm{ms}/100\kern.2em \mathrm{ms} $$ with 1.5-cycle histotripsy sonications at 1 pulse/TR. Feasibility of treatment monitoring was also evaluated for histotripsy through an excised human skull.

Results: The MR-CaDE imaging pulse sequence was used to perform treatment monitoring of cavitation generated by histotripsy with a temporal resolution of 0.5 s $$ 0.5\kern.2em \mathrm{s} $$ with a spiral readout. A decrease in the image magnitude and an increase in the phase was observed with an increasing number of histotripsy sonications. The magnitude image exhibited a peak loss of 50%, and the phase image exhibited a maximum increase of 0.64rad compared to the baseline signal level in the brain. The peak signal magnitude change aligned well with the array's geometrical focus, and the post-histotripsy lesion visualized on a DWI ( b = 1000 s/mm 2 $$ \mathrm{b}=1000\kern.2em \mathrm{s}/{\mathrm{mm}}^2 $$ ) scan with an alignment error of 0.71 mm $$ 0.71\kern.2em \mathrm{mm} $$ and 1.25 mm $$ 1.25\kern.2em \mathrm{mm} $$ in the transverse and longitudinal axes, respectively. The area of the histotripsy response using the spiral readout in the magnitude and phase images were 3 . 38 mm × 5 . 62 mm $$ 3.38\kern0.3em \mathrm{mm}\times 5.62\kern0.3em \mathrm{mm} $$ and 10 . 92 mm × 20 . 28 mm $$ 10.92\kern0.3em \mathrm{mm}\times 20.28\kern0.3em \mathrm{mm} $$ , respectively.

Conclusion: This work demonstrated the feasibility of the MR-CaDE pulse sequence, which can be used to monitor cavitation events in the brain generated by histotripsy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信