{"title":"亚漫反射光谱与机器学习相结合的口腔黏膜疾病识别方法。","authors":"Limin Zhang, Qing Chang, Qi Zhang, Siyi Zou, Dongyuan Liu, Feng Gao, Chenlu Liu","doi":"10.1002/lsm.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Oral squamous cell carcinoma (OSCC) is the sixth-highest incidence of malignant tumors worldwide. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Here, we present a sub-diffuse reflectance spectroscopy combined with a machine learning method for oral mucosal disease identification. This method provides a noninvasive cost-effective identification option for early signs of malignancy.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Sub-diffuse spectra of three oral sites (hypoglottis, buccal, and gingiva) from healthy subjects and three types of mucosal lesions (oral lichen planus, OLP, oral leukoplakia, OLK, and OSCC) from patients were collected by using a home-made sub-diffuse reflectance spectroscopy prototype system, and three features including spectra ratio (SR), first-order derivative(DE) of the spectra and optical parameters (OP) were derived from the original spectra to enhance the insights into the optical properties of the oral mucosal tissues. To accurately classify the spectral features, a support vector machine (SVM) and probabilistic neural network (PNN) were employed.</p>\n </section>\n \n <section>\n \n <h3> Result</h3>\n \n <p>Most of the statistical distributions of the spectral features demonstrated obvious differences and the two classification methods exhibited comparable performances. For the classification in the oral sites of healthy subjects, the OP-based classification results were unsatisfactory, while the classification results utilizing DR, SR, and DE achieved a least accuracy of 0.8289, sensitivity of 0.8495, sensitivity of 0.9311, and Matthews correlation coefficient of 0.8085. Comparatively, the classification results between OLP, OLK, OSCC, and normal tissue obtained achieved high indexes even using the OP feature.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Integrating sub-diffuse reflectance spectroscopy measurement and suitable machine learning methods can obtain remarkable precision in differentiating different sites of oral mucosa and identifying different types of oral mucosal diseases, especially based on DE features. It is of great help in detecting OSCC and is expected to be a highly sensitive, time-sensitive, and accurate method for oral disease detection.</p>\n </section>\n </div>","PeriodicalId":17961,"journal":{"name":"Lasers in Surgery and Medicine","volume":"57 4","pages":"339-351"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-diffuse Reflectance Spectroscopy Combined With Machine Learning Method for Oral Mucosal Disease Identification\",\"authors\":\"Limin Zhang, Qing Chang, Qi Zhang, Siyi Zou, Dongyuan Liu, Feng Gao, Chenlu Liu\",\"doi\":\"10.1002/lsm.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>Oral squamous cell carcinoma (OSCC) is the sixth-highest incidence of malignant tumors worldwide. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Here, we present a sub-diffuse reflectance spectroscopy combined with a machine learning method for oral mucosal disease identification. This method provides a noninvasive cost-effective identification option for early signs of malignancy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Sub-diffuse spectra of three oral sites (hypoglottis, buccal, and gingiva) from healthy subjects and three types of mucosal lesions (oral lichen planus, OLP, oral leukoplakia, OLK, and OSCC) from patients were collected by using a home-made sub-diffuse reflectance spectroscopy prototype system, and three features including spectra ratio (SR), first-order derivative(DE) of the spectra and optical parameters (OP) were derived from the original spectra to enhance the insights into the optical properties of the oral mucosal tissues. To accurately classify the spectral features, a support vector machine (SVM) and probabilistic neural network (PNN) were employed.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Result</h3>\\n \\n <p>Most of the statistical distributions of the spectral features demonstrated obvious differences and the two classification methods exhibited comparable performances. For the classification in the oral sites of healthy subjects, the OP-based classification results were unsatisfactory, while the classification results utilizing DR, SR, and DE achieved a least accuracy of 0.8289, sensitivity of 0.8495, sensitivity of 0.9311, and Matthews correlation coefficient of 0.8085. Comparatively, the classification results between OLP, OLK, OSCC, and normal tissue obtained achieved high indexes even using the OP feature.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Integrating sub-diffuse reflectance spectroscopy measurement and suitable machine learning methods can obtain remarkable precision in differentiating different sites of oral mucosa and identifying different types of oral mucosal diseases, especially based on DE features. It is of great help in detecting OSCC and is expected to be a highly sensitive, time-sensitive, and accurate method for oral disease detection.</p>\\n </section>\\n </div>\",\"PeriodicalId\":17961,\"journal\":{\"name\":\"Lasers in Surgery and Medicine\",\"volume\":\"57 4\",\"pages\":\"339-351\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lasers in Surgery and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lsm.70011\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Surgery and Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lsm.70011","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Sub-diffuse Reflectance Spectroscopy Combined With Machine Learning Method for Oral Mucosal Disease Identification
Objectives
Oral squamous cell carcinoma (OSCC) is the sixth-highest incidence of malignant tumors worldwide. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Here, we present a sub-diffuse reflectance spectroscopy combined with a machine learning method for oral mucosal disease identification. This method provides a noninvasive cost-effective identification option for early signs of malignancy.
Methods
Sub-diffuse spectra of three oral sites (hypoglottis, buccal, and gingiva) from healthy subjects and three types of mucosal lesions (oral lichen planus, OLP, oral leukoplakia, OLK, and OSCC) from patients were collected by using a home-made sub-diffuse reflectance spectroscopy prototype system, and three features including spectra ratio (SR), first-order derivative(DE) of the spectra and optical parameters (OP) were derived from the original spectra to enhance the insights into the optical properties of the oral mucosal tissues. To accurately classify the spectral features, a support vector machine (SVM) and probabilistic neural network (PNN) were employed.
Result
Most of the statistical distributions of the spectral features demonstrated obvious differences and the two classification methods exhibited comparable performances. For the classification in the oral sites of healthy subjects, the OP-based classification results were unsatisfactory, while the classification results utilizing DR, SR, and DE achieved a least accuracy of 0.8289, sensitivity of 0.8495, sensitivity of 0.9311, and Matthews correlation coefficient of 0.8085. Comparatively, the classification results between OLP, OLK, OSCC, and normal tissue obtained achieved high indexes even using the OP feature.
Conclusion
Integrating sub-diffuse reflectance spectroscopy measurement and suitable machine learning methods can obtain remarkable precision in differentiating different sites of oral mucosa and identifying different types of oral mucosal diseases, especially based on DE features. It is of great help in detecting OSCC and is expected to be a highly sensitive, time-sensitive, and accurate method for oral disease detection.
期刊介绍:
Lasers in Surgery and Medicine publishes the highest quality research and clinical manuscripts in areas relating to the use of lasers in medicine and biology. The journal publishes basic and clinical studies on the therapeutic and diagnostic use of lasers in all the surgical and medical specialties. Contributions regarding clinical trials, new therapeutic techniques or instrumentation, laser biophysics and bioengineering, photobiology and photochemistry, outcomes research, cost-effectiveness, and other aspects of biomedicine are welcome. Using a process of rigorous yet rapid review of submitted manuscripts, findings of high scientific and medical interest are published with a minimum delay.