Xi Shen, Miaomiao Wang, Shasha Pei, Shuyu Xiao, Kun Xiao, Jinlong Li, Xiaoming Li, Qingan Xia, Heliang Liu, Fuhai Shen
{"title":"暴露于粉尘的大鼠的肠道微生物组和代谢组学特征","authors":"Xi Shen, Miaomiao Wang, Shasha Pei, Shuyu Xiao, Kun Xiao, Jinlong Li, Xiaoming Li, Qingan Xia, Heliang Liu, Fuhai Shen","doi":"10.2174/0113862073354023250314050225","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Limited treatments for silicosis necessitate further study of pneumoconiosis characteristics and pathophysiology. This study employs metabolomics to investigate metabolite changes and identify biomarkers for understanding pneumoconiosis pathogenesis.</p><p><strong>Methods: </strong>We explored pneumoconiosis pathogenesis through the lens of intestinal flora, using 18 healthy SPF male SD rats divided into three groups: control, coal dust, and silica. After dust exposure, metabolite changes were analyzed to identify metabolic markers and pathways. We assessed the relationship between intestinal flora and silicosis, aiming to provide early diagnostic evidence. Rats were exposed to coal dust, silica, or sterile saline for 8 weeks, after which blood, lung tissue, and feces were collected. Lung pathology was assessed, and inflammatory factors (IL-6, IL-11) were measured. 16S rDNA sequencing and UHPLC-QTOFMS metabolomics were used to analyze intestinal flora and fecal metabolites.</p><p><strong>Results: </strong>After 8 weeks of dust exposure, silica-exposed rats showed significantly reduced weight and elevated serum IL-6 and IL-11 levels compared to controls (P < 0.05). Lung tissue pathology revealed normal alveolar structure in controls, whereas silica group rats exhibited lung damage, intensified inflammation, and silicon nodule formation. Coal dust group rats showed lung tissue changes with fibroblast aggregation. α diversity analysis showed a decreased Shannon index and increased Simpson index in the coal dust group, and a decreased Simpson index in the silica group, suggesting altered intestinal flora. β diversity analysis confirmed significant differences in gut microbiota between dust-exposed groups and controls. Metabolomics identified 11 differential metabolites in rat feces, meeting criteria of Fold change > 2, VIP > 1, and P < 0.05, indicating metabolic changes post-exposure.</p><p><strong>Conclusion: </strong>Dust exposure disrupts intestinal flora and metabolic state, with potential metabolic markers identified in both coal dust and silica groups, implicating fructose and mannose metabolism in coal dust exposure and sphingolipid metabolism in silica exposure. This study provides new insights into the pathogenesis of pneumoconiosis and potential biomarkers for early diagnosis.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gut Microbiome and Metabolomics Profiles of Dust-exposed Rats.\",\"authors\":\"Xi Shen, Miaomiao Wang, Shasha Pei, Shuyu Xiao, Kun Xiao, Jinlong Li, Xiaoming Li, Qingan Xia, Heliang Liu, Fuhai Shen\",\"doi\":\"10.2174/0113862073354023250314050225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Limited treatments for silicosis necessitate further study of pneumoconiosis characteristics and pathophysiology. This study employs metabolomics to investigate metabolite changes and identify biomarkers for understanding pneumoconiosis pathogenesis.</p><p><strong>Methods: </strong>We explored pneumoconiosis pathogenesis through the lens of intestinal flora, using 18 healthy SPF male SD rats divided into three groups: control, coal dust, and silica. After dust exposure, metabolite changes were analyzed to identify metabolic markers and pathways. We assessed the relationship between intestinal flora and silicosis, aiming to provide early diagnostic evidence. Rats were exposed to coal dust, silica, or sterile saline for 8 weeks, after which blood, lung tissue, and feces were collected. Lung pathology was assessed, and inflammatory factors (IL-6, IL-11) were measured. 16S rDNA sequencing and UHPLC-QTOFMS metabolomics were used to analyze intestinal flora and fecal metabolites.</p><p><strong>Results: </strong>After 8 weeks of dust exposure, silica-exposed rats showed significantly reduced weight and elevated serum IL-6 and IL-11 levels compared to controls (P < 0.05). Lung tissue pathology revealed normal alveolar structure in controls, whereas silica group rats exhibited lung damage, intensified inflammation, and silicon nodule formation. Coal dust group rats showed lung tissue changes with fibroblast aggregation. α diversity analysis showed a decreased Shannon index and increased Simpson index in the coal dust group, and a decreased Simpson index in the silica group, suggesting altered intestinal flora. β diversity analysis confirmed significant differences in gut microbiota between dust-exposed groups and controls. Metabolomics identified 11 differential metabolites in rat feces, meeting criteria of Fold change > 2, VIP > 1, and P < 0.05, indicating metabolic changes post-exposure.</p><p><strong>Conclusion: </strong>Dust exposure disrupts intestinal flora and metabolic state, with potential metabolic markers identified in both coal dust and silica groups, implicating fructose and mannose metabolism in coal dust exposure and sphingolipid metabolism in silica exposure. This study provides new insights into the pathogenesis of pneumoconiosis and potential biomarkers for early diagnosis.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073354023250314050225\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073354023250314050225","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The Gut Microbiome and Metabolomics Profiles of Dust-exposed Rats.
Background: Limited treatments for silicosis necessitate further study of pneumoconiosis characteristics and pathophysiology. This study employs metabolomics to investigate metabolite changes and identify biomarkers for understanding pneumoconiosis pathogenesis.
Methods: We explored pneumoconiosis pathogenesis through the lens of intestinal flora, using 18 healthy SPF male SD rats divided into three groups: control, coal dust, and silica. After dust exposure, metabolite changes were analyzed to identify metabolic markers and pathways. We assessed the relationship between intestinal flora and silicosis, aiming to provide early diagnostic evidence. Rats were exposed to coal dust, silica, or sterile saline for 8 weeks, after which blood, lung tissue, and feces were collected. Lung pathology was assessed, and inflammatory factors (IL-6, IL-11) were measured. 16S rDNA sequencing and UHPLC-QTOFMS metabolomics were used to analyze intestinal flora and fecal metabolites.
Results: After 8 weeks of dust exposure, silica-exposed rats showed significantly reduced weight and elevated serum IL-6 and IL-11 levels compared to controls (P < 0.05). Lung tissue pathology revealed normal alveolar structure in controls, whereas silica group rats exhibited lung damage, intensified inflammation, and silicon nodule formation. Coal dust group rats showed lung tissue changes with fibroblast aggregation. α diversity analysis showed a decreased Shannon index and increased Simpson index in the coal dust group, and a decreased Simpson index in the silica group, suggesting altered intestinal flora. β diversity analysis confirmed significant differences in gut microbiota between dust-exposed groups and controls. Metabolomics identified 11 differential metabolites in rat feces, meeting criteria of Fold change > 2, VIP > 1, and P < 0.05, indicating metabolic changes post-exposure.
Conclusion: Dust exposure disrupts intestinal flora and metabolic state, with potential metabolic markers identified in both coal dust and silica groups, implicating fructose and mannose metabolism in coal dust exposure and sphingolipid metabolism in silica exposure. This study provides new insights into the pathogenesis of pneumoconiosis and potential biomarkers for early diagnosis.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.