{"title":"没有金标准的诊断准确性研究的meta分析Vine copula混合模型。","authors":"Aristidis K Nikoloulopoulos","doi":"10.1093/biomtc/ujaf037","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous statistical models have been proposed for conducting meta-analysis of diagnostic accuracy studies when a gold standard is available. However, in real-world scenarios, the gold standard test may not be perfect due to several factors such as measurement error, non-availability, invasiveness, or high cost. A generalized linear mixed model (GLMM) is currently recommended to account for an imperfect reference test. We propose vine copula mixed models for meta-analysis of diagnostic test accuracy studies with an imperfect reference standard. Our general models include the GLMM as a special case, can have arbitrary univariate distributions for the random effects, and can provide tail dependencies and asymmetries. Our general methodology is demonstrated with an extensive simulation study and illustrated by insightfully re-analyzing the data of a meta-analysis of the Papanicolaou test that diagnoses cervical neoplasia. Our study suggests that there can be an improvement on GLMM and makes the argument for moving to vine copula random effects models.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vine copula mixed models for meta-analysis of diagnostic accuracy studies without a gold standard.\",\"authors\":\"Aristidis K Nikoloulopoulos\",\"doi\":\"10.1093/biomtc/ujaf037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous statistical models have been proposed for conducting meta-analysis of diagnostic accuracy studies when a gold standard is available. However, in real-world scenarios, the gold standard test may not be perfect due to several factors such as measurement error, non-availability, invasiveness, or high cost. A generalized linear mixed model (GLMM) is currently recommended to account for an imperfect reference test. We propose vine copula mixed models for meta-analysis of diagnostic test accuracy studies with an imperfect reference standard. Our general models include the GLMM as a special case, can have arbitrary univariate distributions for the random effects, and can provide tail dependencies and asymmetries. Our general methodology is demonstrated with an extensive simulation study and illustrated by insightfully re-analyzing the data of a meta-analysis of the Papanicolaou test that diagnoses cervical neoplasia. Our study suggests that there can be an improvement on GLMM and makes the argument for moving to vine copula random effects models.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Vine copula mixed models for meta-analysis of diagnostic accuracy studies without a gold standard.
Numerous statistical models have been proposed for conducting meta-analysis of diagnostic accuracy studies when a gold standard is available. However, in real-world scenarios, the gold standard test may not be perfect due to several factors such as measurement error, non-availability, invasiveness, or high cost. A generalized linear mixed model (GLMM) is currently recommended to account for an imperfect reference test. We propose vine copula mixed models for meta-analysis of diagnostic test accuracy studies with an imperfect reference standard. Our general models include the GLMM as a special case, can have arbitrary univariate distributions for the random effects, and can provide tail dependencies and asymmetries. Our general methodology is demonstrated with an extensive simulation study and illustrated by insightfully re-analyzing the data of a meta-analysis of the Papanicolaou test that diagnoses cervical neoplasia. Our study suggests that there can be an improvement on GLMM and makes the argument for moving to vine copula random effects models.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.