具有工程蒸发动力学的叶片涂层使可扩展的钙钛矿光伏电池具有最小的效率损失。

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Huan Guo, Ligang Yuan, Yuyan Dong, Kezhou Fan, Manyu Lam, Chenghao Duan, Shibing Zou, Kam Sing Wong, Keyou Yan
{"title":"具有工程蒸发动力学的叶片涂层使可扩展的钙钛矿光伏电池具有最小的效率损失。","authors":"Huan Guo,&nbsp;Ligang Yuan,&nbsp;Yuyan Dong,&nbsp;Kezhou Fan,&nbsp;Manyu Lam,&nbsp;Chenghao Duan,&nbsp;Shibing Zou,&nbsp;Kam Sing Wong,&nbsp;Keyou Yan","doi":"10.1002/smtd.202500141","DOIUrl":null,"url":null,"abstract":"<p>The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm<sup>2</sup>) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm<sup>2</sup> mini-modules (12 cm<sup>2</sup> active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 8","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blade-Coating with Engineered Evaporation Kinetics Enables Scalable Perovskite Photovoltaics with Minimal Efficiency Loss\",\"authors\":\"Huan Guo,&nbsp;Ligang Yuan,&nbsp;Yuyan Dong,&nbsp;Kezhou Fan,&nbsp;Manyu Lam,&nbsp;Chenghao Duan,&nbsp;Shibing Zou,&nbsp;Kam Sing Wong,&nbsp;Keyou Yan\",\"doi\":\"10.1002/smtd.202500141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm<sup>2</sup>) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm<sup>2</sup> mini-modules (12 cm<sup>2</sup> active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500141\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500141","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

叶片涂层法已成为一项重要的技术,可以扩展到钙钛矿太阳能光伏电池的制造中。然而,在环境叶片涂层工艺中,快速溶剂去除与结晶控制之间的内在冲突从根本上制约了钙钛矿太阳能组件的生产吞吐量和薄膜质量。在这里,开发了具有分层挥发性梯度的三元溶剂体系(DMF/NMP/2-甲氧基乙醇),与真空闪蒸协同集成,以解耦成核和晶体生长动力学。具体来说,2-甲氧基乙醇(2-ME)可以实现真空闪蒸诱导的过饱和,从而实现模板化成核,而NMP可以促进应变松弛的颗粒聚结,而DMF可以确保最佳的油墨流变性。该方法在室温条件下(T =≈30±5°C, RH = 30±10%)可得到晶粒增大的无针孔薄膜。叶片包覆的n-i-p钙钛矿太阳能电池(有效面积为0.08 cm2)的功率转换效率(PCE)为23.24%,5 × 5 cm2迷你组件(有效面积为12 cm2)达到22.12%,在面积扩大150倍后,效率损失仅为4.8%。该器件表现出更好的稳定性,在25°C下最大功率点跟踪(MPPT) 800小时后,其初始PCE保持了90%。该方法建立了一个统一的解决方案,解决了钙钛矿光伏电池的结晶精度、环境兼容性和工业可制造性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Blade-Coating with Engineered Evaporation Kinetics Enables Scalable Perovskite Photovoltaics with Minimal Efficiency Loss

Blade-Coating with Engineered Evaporation Kinetics Enables Scalable Perovskite Photovoltaics with Minimal Efficiency Loss

The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm2) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm2 mini-modules (12 cm2 active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信