Huan Guo, Ligang Yuan, Yuyan Dong, Kezhou Fan, Manyu Lam, Chenghao Duan, Shibing Zou, Kam Sing Wong, Keyou Yan
{"title":"具有工程蒸发动力学的叶片涂层使可扩展的钙钛矿光伏电池具有最小的效率损失。","authors":"Huan Guo, Ligang Yuan, Yuyan Dong, Kezhou Fan, Manyu Lam, Chenghao Duan, Shibing Zou, Kam Sing Wong, Keyou Yan","doi":"10.1002/smtd.202500141","DOIUrl":null,"url":null,"abstract":"<p>The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm<sup>2</sup>) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm<sup>2</sup> mini-modules (12 cm<sup>2</sup> active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 8","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blade-Coating with Engineered Evaporation Kinetics Enables Scalable Perovskite Photovoltaics with Minimal Efficiency Loss\",\"authors\":\"Huan Guo, Ligang Yuan, Yuyan Dong, Kezhou Fan, Manyu Lam, Chenghao Duan, Shibing Zou, Kam Sing Wong, Keyou Yan\",\"doi\":\"10.1002/smtd.202500141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm<sup>2</sup>) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm<sup>2</sup> mini-modules (12 cm<sup>2</sup> active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500141\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500141","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Blade-Coating with Engineered Evaporation Kinetics Enables Scalable Perovskite Photovoltaics with Minimal Efficiency Loss
The blade-coating method has become an important technology that can be expanded to manufacture perovskite solar photovoltaics. However, the inherent conflict between rapid solvent removal and crystallization control in ambient blade-coating process fundamentally constrains the production throughput and film quality of perovskite solar modules. Here, a ternary solvent system (DMF/NMP/2-methoxyethanol) with hierarchical volatility gradients is developed, synergistically integrated with vacuum-flash evaporation to decouple nucleation and crystal growth kinetics. Specifically, 2-methoxyethanol (2-ME) enables vacuum flash-induced supersaturation for templated nucleation, while NMP facilitates strain-relaxed grain coalescence, and DMF ensures optimal ink rheology. This approach yields pinhole-free films with enlarged grains under ambient conditions (T = ≈30 ± 5 °C, RH = 30 ± 10%). The blade-coated n-i-p perovskite solar cells (active area: 0.08 cm2) achieve a power conversion efficiency (PCE) of 23.24%, and 5 × 5 cm2 mini-modules (12 cm2 active area) reach 22.12%, with merely 4.8% efficiency loss upon 150 times area upscaling. The devices exhibit improved stability, retaining 90% of their initial PCE after 800 h of maximum power point tracking (MPPT) at 25 °C. The approach establishes a unified solution that addresses crystallization precision, ambient compatibility, and industrial manufacturability in perovskite photovoltaics.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.