Long Pan, Xiong Xiong Liu, Pengcheng Yuan, Haotian Zhang, Yuan Zhang, Mufan Cao, Min Gao, Yaping Wang, Tomasz Wejrzanowski, Wei Zhang, ZhengMing Sun
{"title":"石榴石引发甲基丙烯酸甲酯刷接枝到含氟聚合物上制备电化学稳定和快速离子导电的复合固态电解质。","authors":"Long Pan, Xiong Xiong Liu, Pengcheng Yuan, Haotian Zhang, Yuan Zhang, Mufan Cao, Min Gao, Yaping Wang, Tomasz Wejrzanowski, Wei Zhang, ZhengMing Sun","doi":"10.1002/cssc.202500044","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoropolymer-based solid-state electrolytes (SSEs) promise next-generation all-solid-state Li metal batteries but suffer poor stability against Li metal anodes and sluggish Li+ transport. Here, we propose garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as a bifunctional mediator to enable the in-situ grafting and compositing for poly(vinylidene fluoride-co-hexafluoropropylene) (PVH), aiming at electrochemically stable and superionic SSEs. The LLZTO not only induces the formation of C=C bonds as active sites for effectively grafting methyl methacrylate (MMA) brush chains to PVH, but also acts as an ion-conducting filler to enhance mechanical properties and ion transport. In addition, the grafted MMA brush chains improve electrochemical stability against Li metal anodes and weaken polymer crystallinity to create amorphous domains for Li+ transport. Therefore, the resulting composite SSEs, PVH-graft-MMA/LLZTO (PVHML), achieves an impressive ionic conductivity of 0.94 mS cm-1 at 25 °C, high mechanical strength (2.02 MPa), and exceptional cycling stability in Li symmetric cells (2800 h at 0.1 mA cm-1, 25 °C). Furthermore, PVHML-based all-solid-state LiFePO4|Li full cells demonstrate superior cyclability with 89.8% capacity retention at 0.2C after 200 cycles (25 °C). This strategy provides an efficient solution to the challenges of fluoropolymer-based SSEs, paving the way for their practical applications in high-performance all-solid-state lithium metal batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500044"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Garnets Initiate Grafting of Methyl Methacrylate Brushes onto Fluoropolymers for Electrochemically Stable and Fast-Ion-Conducting Composite Solid-State Electrolytes.\",\"authors\":\"Long Pan, Xiong Xiong Liu, Pengcheng Yuan, Haotian Zhang, Yuan Zhang, Mufan Cao, Min Gao, Yaping Wang, Tomasz Wejrzanowski, Wei Zhang, ZhengMing Sun\",\"doi\":\"10.1002/cssc.202500044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluoropolymer-based solid-state electrolytes (SSEs) promise next-generation all-solid-state Li metal batteries but suffer poor stability against Li metal anodes and sluggish Li+ transport. Here, we propose garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as a bifunctional mediator to enable the in-situ grafting and compositing for poly(vinylidene fluoride-co-hexafluoropropylene) (PVH), aiming at electrochemically stable and superionic SSEs. The LLZTO not only induces the formation of C=C bonds as active sites for effectively grafting methyl methacrylate (MMA) brush chains to PVH, but also acts as an ion-conducting filler to enhance mechanical properties and ion transport. In addition, the grafted MMA brush chains improve electrochemical stability against Li metal anodes and weaken polymer crystallinity to create amorphous domains for Li+ transport. Therefore, the resulting composite SSEs, PVH-graft-MMA/LLZTO (PVHML), achieves an impressive ionic conductivity of 0.94 mS cm-1 at 25 °C, high mechanical strength (2.02 MPa), and exceptional cycling stability in Li symmetric cells (2800 h at 0.1 mA cm-1, 25 °C). Furthermore, PVHML-based all-solid-state LiFePO4|Li full cells demonstrate superior cyclability with 89.8% capacity retention at 0.2C after 200 cycles (25 °C). This strategy provides an efficient solution to the challenges of fluoropolymer-based SSEs, paving the way for their practical applications in high-performance all-solid-state lithium metal batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500044\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500044\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500044","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
基于氟聚合物的固态电解质(ses)有望成为下一代全固态锂金属电池,但在锂金属阳极下稳定性较差,且Li+传输缓慢。本文提出了石榴石型Li6.4La3Zr1.4Ta0.6O12 (LLZTO)作为双功能介质,用于聚偏氟乙烯-共六氟丙烯(PVH)的原位接枝和合成,旨在获得电化学稳定的超离子sss。LLZTO不仅可以诱导形成C=C键,作为甲基丙烯酸甲酯(MMA)电刷链接枝PVH的活性位点,还可以作为离子导电填料,提高机械性能和离子传输。此外,接枝的MMA电刷链提高了对锂金属阳极的电化学稳定性,削弱了聚合物的结晶度,为Li+的传输创造了非晶畴。因此,所得到的复合sse pvh -接枝- mma /LLZTO (PVHML)在25°C下具有0.94 mS cm-1的离子电导率,高机械强度(2.02 MPa),以及在Li对称电池中优异的循环稳定性(在0.1 mA cm-1, 25°C下2800 h)。此外,基于pvhml的全固态LiFePO4|Li全电池在0.2C(25°C)循环200次后,具有89.8%的容量保持率。该策略为氟聚合物基sse的挑战提供了有效的解决方案,为其在高性能全固态锂金属电池中的实际应用铺平了道路。
Garnets Initiate Grafting of Methyl Methacrylate Brushes onto Fluoropolymers for Electrochemically Stable and Fast-Ion-Conducting Composite Solid-State Electrolytes.
Fluoropolymer-based solid-state electrolytes (SSEs) promise next-generation all-solid-state Li metal batteries but suffer poor stability against Li metal anodes and sluggish Li+ transport. Here, we propose garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as a bifunctional mediator to enable the in-situ grafting and compositing for poly(vinylidene fluoride-co-hexafluoropropylene) (PVH), aiming at electrochemically stable and superionic SSEs. The LLZTO not only induces the formation of C=C bonds as active sites for effectively grafting methyl methacrylate (MMA) brush chains to PVH, but also acts as an ion-conducting filler to enhance mechanical properties and ion transport. In addition, the grafted MMA brush chains improve electrochemical stability against Li metal anodes and weaken polymer crystallinity to create amorphous domains for Li+ transport. Therefore, the resulting composite SSEs, PVH-graft-MMA/LLZTO (PVHML), achieves an impressive ionic conductivity of 0.94 mS cm-1 at 25 °C, high mechanical strength (2.02 MPa), and exceptional cycling stability in Li symmetric cells (2800 h at 0.1 mA cm-1, 25 °C). Furthermore, PVHML-based all-solid-state LiFePO4|Li full cells demonstrate superior cyclability with 89.8% capacity retention at 0.2C after 200 cycles (25 °C). This strategy provides an efficient solution to the challenges of fluoropolymer-based SSEs, paving the way for their practical applications in high-performance all-solid-state lithium metal batteries.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology