石榴石引发甲基丙烯酸甲酯刷接枝到含氟聚合物上制备电化学稳定和快速离子导电的复合固态电解质。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-04-07 DOI:10.1002/cssc.202500044
Long Pan, Xiong Xiong Liu, Pengcheng Yuan, Haotian Zhang, Yuan Zhang, Mufan Cao, Min Gao, Yaping Wang, Tomasz Wejrzanowski, Wei Zhang, ZhengMing Sun
{"title":"石榴石引发甲基丙烯酸甲酯刷接枝到含氟聚合物上制备电化学稳定和快速离子导电的复合固态电解质。","authors":"Long Pan, Xiong Xiong Liu, Pengcheng Yuan, Haotian Zhang, Yuan Zhang, Mufan Cao, Min Gao, Yaping Wang, Tomasz Wejrzanowski, Wei Zhang, ZhengMing Sun","doi":"10.1002/cssc.202500044","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoropolymer-based solid-state electrolytes (SSEs) promise next-generation all-solid-state Li metal batteries but suffer poor stability against Li metal anodes and sluggish Li+ transport. Here, we propose garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as a bifunctional mediator to enable the in-situ grafting and compositing for poly(vinylidene fluoride-co-hexafluoropropylene) (PVH), aiming at electrochemically stable and superionic SSEs. The LLZTO not only induces the formation of C=C bonds as active sites for effectively grafting methyl methacrylate (MMA) brush chains to PVH, but also acts as an ion-conducting filler to enhance mechanical properties and ion transport. In addition, the grafted MMA brush chains improve electrochemical stability against Li metal anodes and weaken polymer crystallinity to create amorphous domains for Li+ transport. Therefore, the resulting composite SSEs, PVH-graft-MMA/LLZTO (PVHML), achieves an impressive ionic conductivity of 0.94 mS cm-1 at 25 °C, high mechanical strength (2.02 MPa), and exceptional cycling stability in Li symmetric cells (2800 h at 0.1 mA cm-1, 25 °C). Furthermore, PVHML-based all-solid-state LiFePO4|Li full cells demonstrate superior cyclability with 89.8% capacity retention at 0.2C after 200 cycles (25 °C). This strategy provides an efficient solution to the challenges of fluoropolymer-based SSEs, paving the way for their practical applications in high-performance all-solid-state lithium metal batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500044"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Garnets Initiate Grafting of Methyl Methacrylate Brushes onto Fluoropolymers for Electrochemically Stable and Fast-Ion-Conducting Composite Solid-State Electrolytes.\",\"authors\":\"Long Pan, Xiong Xiong Liu, Pengcheng Yuan, Haotian Zhang, Yuan Zhang, Mufan Cao, Min Gao, Yaping Wang, Tomasz Wejrzanowski, Wei Zhang, ZhengMing Sun\",\"doi\":\"10.1002/cssc.202500044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluoropolymer-based solid-state electrolytes (SSEs) promise next-generation all-solid-state Li metal batteries but suffer poor stability against Li metal anodes and sluggish Li+ transport. Here, we propose garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as a bifunctional mediator to enable the in-situ grafting and compositing for poly(vinylidene fluoride-co-hexafluoropropylene) (PVH), aiming at electrochemically stable and superionic SSEs. The LLZTO not only induces the formation of C=C bonds as active sites for effectively grafting methyl methacrylate (MMA) brush chains to PVH, but also acts as an ion-conducting filler to enhance mechanical properties and ion transport. In addition, the grafted MMA brush chains improve electrochemical stability against Li metal anodes and weaken polymer crystallinity to create amorphous domains for Li+ transport. Therefore, the resulting composite SSEs, PVH-graft-MMA/LLZTO (PVHML), achieves an impressive ionic conductivity of 0.94 mS cm-1 at 25 °C, high mechanical strength (2.02 MPa), and exceptional cycling stability in Li symmetric cells (2800 h at 0.1 mA cm-1, 25 °C). Furthermore, PVHML-based all-solid-state LiFePO4|Li full cells demonstrate superior cyclability with 89.8% capacity retention at 0.2C after 200 cycles (25 °C). This strategy provides an efficient solution to the challenges of fluoropolymer-based SSEs, paving the way for their practical applications in high-performance all-solid-state lithium metal batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202500044\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500044\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500044","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于氟聚合物的固态电解质(ses)有望成为下一代全固态锂金属电池,但在锂金属阳极下稳定性较差,且Li+传输缓慢。本文提出了石榴石型Li6.4La3Zr1.4Ta0.6O12 (LLZTO)作为双功能介质,用于聚偏氟乙烯-共六氟丙烯(PVH)的原位接枝和合成,旨在获得电化学稳定的超离子sss。LLZTO不仅可以诱导形成C=C键,作为甲基丙烯酸甲酯(MMA)电刷链接枝PVH的活性位点,还可以作为离子导电填料,提高机械性能和离子传输。此外,接枝的MMA电刷链提高了对锂金属阳极的电化学稳定性,削弱了聚合物的结晶度,为Li+的传输创造了非晶畴。因此,所得到的复合sse pvh -接枝- mma /LLZTO (PVHML)在25°C下具有0.94 mS cm-1的离子电导率,高机械强度(2.02 MPa),以及在Li对称电池中优异的循环稳定性(在0.1 mA cm-1, 25°C下2800 h)。此外,基于pvhml的全固态LiFePO4|Li全电池在0.2C(25°C)循环200次后,具有89.8%的容量保持率。该策略为氟聚合物基sse的挑战提供了有效的解决方案,为其在高性能全固态锂金属电池中的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Garnets Initiate Grafting of Methyl Methacrylate Brushes onto Fluoropolymers for Electrochemically Stable and Fast-Ion-Conducting Composite Solid-State Electrolytes.

Fluoropolymer-based solid-state electrolytes (SSEs) promise next-generation all-solid-state Li metal batteries but suffer poor stability against Li metal anodes and sluggish Li+ transport. Here, we propose garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as a bifunctional mediator to enable the in-situ grafting and compositing for poly(vinylidene fluoride-co-hexafluoropropylene) (PVH), aiming at electrochemically stable and superionic SSEs. The LLZTO not only induces the formation of C=C bonds as active sites for effectively grafting methyl methacrylate (MMA) brush chains to PVH, but also acts as an ion-conducting filler to enhance mechanical properties and ion transport. In addition, the grafted MMA brush chains improve electrochemical stability against Li metal anodes and weaken polymer crystallinity to create amorphous domains for Li+ transport. Therefore, the resulting composite SSEs, PVH-graft-MMA/LLZTO (PVHML), achieves an impressive ionic conductivity of 0.94 mS cm-1 at 25 °C, high mechanical strength (2.02 MPa), and exceptional cycling stability in Li symmetric cells (2800 h at 0.1 mA cm-1, 25 °C). Furthermore, PVHML-based all-solid-state LiFePO4|Li full cells demonstrate superior cyclability with 89.8% capacity retention at 0.2C after 200 cycles (25 °C). This strategy provides an efficient solution to the challenges of fluoropolymer-based SSEs, paving the way for their practical applications in high-performance all-solid-state lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信