含6-喹啉受体的深红色菁氨酸荧光探针用于活细胞和人病变肾脏组织线粒体NAD(P)H成像

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dilka Liyana Arachchige, Sushil K Dwivedi, Peter Agyemang, Henry Lanquaye, Joseph Peters, Grace Rickauer, Ashlyn Colleen Beatty, Matthew Plansinis, Yan Zhang, Athar Ata, Thomas Werner, Haiying Liu
{"title":"含6-喹啉受体的深红色菁氨酸荧光探针用于活细胞和人病变肾脏组织线粒体NAD(P)H成像","authors":"Dilka Liyana Arachchige, Sushil K Dwivedi, Peter Agyemang, Henry Lanquaye, Joseph Peters, Grace Rickauer, Ashlyn Colleen Beatty, Matthew Plansinis, Yan Zhang, Athar Ata, Thomas Werner, Haiying Liu","doi":"10.1021/acsabm.5c00015","DOIUrl":null,"url":null,"abstract":"<p><p>We developed two deep-red cyanine chromophores, probes <b>A</b> and <b>B</b>, for selective mitochondrial NAD(P)H detection in live cells. Probe <b>A</b> features a 1,2,3,3-tetramethyl-3H-indolium core, while probe <b>B</b> incorporates a 1,1,2,3-tetramethyl-1H-benzo[e]indol-3-ium moiety, both linked to quinolinium via a vinyl bond to enable fluorescence modulation upon NAD(P)H reduction of probes <b>A</b> and <b>B</b>. To explore the role of electron-withdrawing groups in probe sensitivity, we synthesized three additional cyanine dyes (probes <b>C</b>, <b>D</b>, and <b>E</b>) via condensation of 6-quinolinecarboxaldehyde with 2,3-dimethyl-1,3-benzothiazolium acceptor and malononitrile derivatives, followed by methylation. Under NAD(P)H-deficient conditions, probe <b>A</b> showed absorption at 382 nm with weak fluorescence at 636 nm, while probe <b>B</b> absorbed at 443 nm with weak fluorescence at 618 nm. Upon NAD(P)H reduction, probe <b>A</b> exhibited red-shifted absorption at 520 nm with enhanced emission at 589 nm, and probe <b>B</b> at 550 nm with strong emission at 610 nm. Probe <b>C</b> showed absorption at 524 nm with enhanced emission at 586 nm, while probes <b>D</b> and <b>E</b> exhibited no detectable NAD(P)H response, highlighting the critical role of quinolinium acceptors. Probe <b>B</b> demonstrated superior sensitivity, successfully tracking NAD(P)H fluctuations in HeLa cells under glycolysis stimulation (glucose, lactate, pyruvate) and treatments with LPS and methotrexate. It also visualized NAD(P)H in <i>Drosophila</i> larvae, revealing increased levels after drug treatments. Notably, probe <b>B</b> distinguished between healthy and diseased human kidney tissues, detecting significantly elevated NADH levels in autosomal dominant polycystic kidney disease (ADPKD) samples, emphasizing its diagnostic potential. This study introduces probe <b>B</b> as a versatile and reliable NAD(P)H sensor for metabolic research and disease diagnostics, offering valuable insights into redox processes in live cells, organisms, and clinical samples.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-Red Cyanine-Based Fluorescent Probes with 6-Quinolinium Acceptors for Mitochondrial NAD(P)H Imaging in Live Cells and Human Diseased Kidney Tissues.\",\"authors\":\"Dilka Liyana Arachchige, Sushil K Dwivedi, Peter Agyemang, Henry Lanquaye, Joseph Peters, Grace Rickauer, Ashlyn Colleen Beatty, Matthew Plansinis, Yan Zhang, Athar Ata, Thomas Werner, Haiying Liu\",\"doi\":\"10.1021/acsabm.5c00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed two deep-red cyanine chromophores, probes <b>A</b> and <b>B</b>, for selective mitochondrial NAD(P)H detection in live cells. Probe <b>A</b> features a 1,2,3,3-tetramethyl-3H-indolium core, while probe <b>B</b> incorporates a 1,1,2,3-tetramethyl-1H-benzo[e]indol-3-ium moiety, both linked to quinolinium via a vinyl bond to enable fluorescence modulation upon NAD(P)H reduction of probes <b>A</b> and <b>B</b>. To explore the role of electron-withdrawing groups in probe sensitivity, we synthesized three additional cyanine dyes (probes <b>C</b>, <b>D</b>, and <b>E</b>) via condensation of 6-quinolinecarboxaldehyde with 2,3-dimethyl-1,3-benzothiazolium acceptor and malononitrile derivatives, followed by methylation. Under NAD(P)H-deficient conditions, probe <b>A</b> showed absorption at 382 nm with weak fluorescence at 636 nm, while probe <b>B</b> absorbed at 443 nm with weak fluorescence at 618 nm. Upon NAD(P)H reduction, probe <b>A</b> exhibited red-shifted absorption at 520 nm with enhanced emission at 589 nm, and probe <b>B</b> at 550 nm with strong emission at 610 nm. Probe <b>C</b> showed absorption at 524 nm with enhanced emission at 586 nm, while probes <b>D</b> and <b>E</b> exhibited no detectable NAD(P)H response, highlighting the critical role of quinolinium acceptors. Probe <b>B</b> demonstrated superior sensitivity, successfully tracking NAD(P)H fluctuations in HeLa cells under glycolysis stimulation (glucose, lactate, pyruvate) and treatments with LPS and methotrexate. It also visualized NAD(P)H in <i>Drosophila</i> larvae, revealing increased levels after drug treatments. Notably, probe <b>B</b> distinguished between healthy and diseased human kidney tissues, detecting significantly elevated NADH levels in autosomal dominant polycystic kidney disease (ADPKD) samples, emphasizing its diagnostic potential. This study introduces probe <b>B</b> as a versatile and reliable NAD(P)H sensor for metabolic research and disease diagnostics, offering valuable insights into redox processes in live cells, organisms, and clinical samples.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了两个深红色的花青素发色团,探针A和B,用于在活细胞中选择性检测线粒体NAD(P)H。探针A具有1,2,3,3-四甲基- 3h -吲哚核心,而探针B包含1,1,2,3-四甲基- 1h -苯并[e]吲哚-3-ium部分,它们都通过乙烯基键与喹啉相连,以便在探针A和B的NAD(P)H还原时进行荧光调节。为了探索吸电子基团在探针灵敏度中的作用,我们合成了另外三种菁染料(探针C, D,E) 6-喹啉甲酸与2,3-二甲基-1,3-苯并噻唑受体和丙二腈衍生物缩合,然后甲基化。在NAD(P) h缺乏条件下,探针A在382 nm处吸收,636 nm处荧光弱;探针B在443 nm处吸收,618 nm处荧光弱。在NAD(P)H还原后,探针A在520 nm处表现出红移吸收,在589 nm处发射增强,探针B在550 nm处表现出610 nm强发射。探针C在524 nm处有吸收,在586 nm处有增强的发射,而探针D和E没有检测到NAD(P)H响应,这突出了喹啉受体的关键作用。探针B表现出优异的灵敏度,在糖酵解刺激(葡萄糖、乳酸、丙酮酸)和LPS和甲氨蝶呤处理下,成功地跟踪了HeLa细胞中NAD(P)H的波动。它还可视化了果蝇幼虫的NAD(P)H,显示药物治疗后水平升高。值得注意的是,探针B区分了健康和患病的人肾脏组织,在常染色体显性多囊肾病(ADPKD)样本中检测到NADH水平显著升高,强调了其诊断潜力。本研究介绍了探针B作为一种多功能和可靠的NAD(P)H传感器,用于代谢研究和疾病诊断,为活细胞、生物体和临床样品的氧化还原过程提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-Red Cyanine-Based Fluorescent Probes with 6-Quinolinium Acceptors for Mitochondrial NAD(P)H Imaging in Live Cells and Human Diseased Kidney Tissues.

We developed two deep-red cyanine chromophores, probes A and B, for selective mitochondrial NAD(P)H detection in live cells. Probe A features a 1,2,3,3-tetramethyl-3H-indolium core, while probe B incorporates a 1,1,2,3-tetramethyl-1H-benzo[e]indol-3-ium moiety, both linked to quinolinium via a vinyl bond to enable fluorescence modulation upon NAD(P)H reduction of probes A and B. To explore the role of electron-withdrawing groups in probe sensitivity, we synthesized three additional cyanine dyes (probes C, D, and E) via condensation of 6-quinolinecarboxaldehyde with 2,3-dimethyl-1,3-benzothiazolium acceptor and malononitrile derivatives, followed by methylation. Under NAD(P)H-deficient conditions, probe A showed absorption at 382 nm with weak fluorescence at 636 nm, while probe B absorbed at 443 nm with weak fluorescence at 618 nm. Upon NAD(P)H reduction, probe A exhibited red-shifted absorption at 520 nm with enhanced emission at 589 nm, and probe B at 550 nm with strong emission at 610 nm. Probe C showed absorption at 524 nm with enhanced emission at 586 nm, while probes D and E exhibited no detectable NAD(P)H response, highlighting the critical role of quinolinium acceptors. Probe B demonstrated superior sensitivity, successfully tracking NAD(P)H fluctuations in HeLa cells under glycolysis stimulation (glucose, lactate, pyruvate) and treatments with LPS and methotrexate. It also visualized NAD(P)H in Drosophila larvae, revealing increased levels after drug treatments. Notably, probe B distinguished between healthy and diseased human kidney tissues, detecting significantly elevated NADH levels in autosomal dominant polycystic kidney disease (ADPKD) samples, emphasizing its diagnostic potential. This study introduces probe B as a versatile and reliable NAD(P)H sensor for metabolic research and disease diagnostics, offering valuable insights into redox processes in live cells, organisms, and clinical samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信