Mohammad Afrank, Mohammad Amirkhani, Ehsan Farmahini Farahani, Mojtaba Mirsalim, Nick J. Baker
{"title":"偏压磁通机中备选磁体结构的综合分析","authors":"Mohammad Afrank, Mohammad Amirkhani, Ehsan Farmahini Farahani, Mojtaba Mirsalim, Nick J. Baker","doi":"10.1049/elp2.70014","DOIUrl":null,"url":null,"abstract":"<p>Biased-flux motors are a type of electric machine that operate in an unconventional manner but can offer structural and performance advantages over more conventional topologies. Achieving a suitable design in this relatively uncommon topology requires identifying the effect of various factors on its performance. Even small changes in the structure and magnet configuration can have a significant impact on performance. In this paper, the magnet configuration, flux barriers and bridges are investigated to try and improve the performance of a baseline biased-flux motor. The details of the structure and operating principles are explained, and structures are optimised for torque production in a fixed volume. The no-load and full-load operations of alternative variants are studied in terms of cogging torque, flux density, flux line, torque profiles and overload capability. Moreover, a complete comparison has been made between split-magnet and single-magnet topologies in an intermodular permanent magnet motor. The magnetic stresses on the PMs are studied to assess the demagnetisation risks. It has been explained how splitting the magnets and introducing flux barriers increase the torque density and flux bridges decrease the demagnetisation risk. To better analyse the PM demagnetisation, a thermal study is carried out, and the PMs' B-H curve is modified accordingly. A comparative study is also conducted with other stator-permanent magnet motors to better assess the demagnetisation behaviour of the proposed topologies.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70014","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of Alternative Magnet Configurations in a Biased-Flux Machine\",\"authors\":\"Mohammad Afrank, Mohammad Amirkhani, Ehsan Farmahini Farahani, Mojtaba Mirsalim, Nick J. Baker\",\"doi\":\"10.1049/elp2.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biased-flux motors are a type of electric machine that operate in an unconventional manner but can offer structural and performance advantages over more conventional topologies. Achieving a suitable design in this relatively uncommon topology requires identifying the effect of various factors on its performance. Even small changes in the structure and magnet configuration can have a significant impact on performance. In this paper, the magnet configuration, flux barriers and bridges are investigated to try and improve the performance of a baseline biased-flux motor. The details of the structure and operating principles are explained, and structures are optimised for torque production in a fixed volume. The no-load and full-load operations of alternative variants are studied in terms of cogging torque, flux density, flux line, torque profiles and overload capability. Moreover, a complete comparison has been made between split-magnet and single-magnet topologies in an intermodular permanent magnet motor. The magnetic stresses on the PMs are studied to assess the demagnetisation risks. It has been explained how splitting the magnets and introducing flux barriers increase the torque density and flux bridges decrease the demagnetisation risk. To better analyse the PM demagnetisation, a thermal study is carried out, and the PMs' B-H curve is modified accordingly. A comparative study is also conducted with other stator-permanent magnet motors to better assess the demagnetisation behaviour of the proposed topologies.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comprehensive Analysis of Alternative Magnet Configurations in a Biased-Flux Machine
Biased-flux motors are a type of electric machine that operate in an unconventional manner but can offer structural and performance advantages over more conventional topologies. Achieving a suitable design in this relatively uncommon topology requires identifying the effect of various factors on its performance. Even small changes in the structure and magnet configuration can have a significant impact on performance. In this paper, the magnet configuration, flux barriers and bridges are investigated to try and improve the performance of a baseline biased-flux motor. The details of the structure and operating principles are explained, and structures are optimised for torque production in a fixed volume. The no-load and full-load operations of alternative variants are studied in terms of cogging torque, flux density, flux line, torque profiles and overload capability. Moreover, a complete comparison has been made between split-magnet and single-magnet topologies in an intermodular permanent magnet motor. The magnetic stresses on the PMs are studied to assess the demagnetisation risks. It has been explained how splitting the magnets and introducing flux barriers increase the torque density and flux bridges decrease the demagnetisation risk. To better analyse the PM demagnetisation, a thermal study is carried out, and the PMs' B-H curve is modified accordingly. A comparative study is also conducted with other stator-permanent magnet motors to better assess the demagnetisation behaviour of the proposed topologies.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf