偏压磁通机中备选磁体结构的综合分析

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Afrank, Mohammad Amirkhani, Ehsan Farmahini Farahani, Mojtaba Mirsalim, Nick J. Baker
{"title":"偏压磁通机中备选磁体结构的综合分析","authors":"Mohammad Afrank,&nbsp;Mohammad Amirkhani,&nbsp;Ehsan Farmahini Farahani,&nbsp;Mojtaba Mirsalim,&nbsp;Nick J. Baker","doi":"10.1049/elp2.70014","DOIUrl":null,"url":null,"abstract":"<p>Biased-flux motors are a type of electric machine that operate in an unconventional manner but can offer structural and performance advantages over more conventional topologies. Achieving a suitable design in this relatively uncommon topology requires identifying the effect of various factors on its performance. Even small changes in the structure and magnet configuration can have a significant impact on performance. In this paper, the magnet configuration, flux barriers and bridges are investigated to try and improve the performance of a baseline biased-flux motor. The details of the structure and operating principles are explained, and structures are optimised for torque production in a fixed volume. The no-load and full-load operations of alternative variants are studied in terms of cogging torque, flux density, flux line, torque profiles and overload capability. Moreover, a complete comparison has been made between split-magnet and single-magnet topologies in an intermodular permanent magnet motor. The magnetic stresses on the PMs are studied to assess the demagnetisation risks. It has been explained how splitting the magnets and introducing flux barriers increase the torque density and flux bridges decrease the demagnetisation risk. To better analyse the PM demagnetisation, a thermal study is carried out, and the PMs' B-H curve is modified accordingly. A comparative study is also conducted with other stator-permanent magnet motors to better assess the demagnetisation behaviour of the proposed topologies.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70014","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of Alternative Magnet Configurations in a Biased-Flux Machine\",\"authors\":\"Mohammad Afrank,&nbsp;Mohammad Amirkhani,&nbsp;Ehsan Farmahini Farahani,&nbsp;Mojtaba Mirsalim,&nbsp;Nick J. Baker\",\"doi\":\"10.1049/elp2.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biased-flux motors are a type of electric machine that operate in an unconventional manner but can offer structural and performance advantages over more conventional topologies. Achieving a suitable design in this relatively uncommon topology requires identifying the effect of various factors on its performance. Even small changes in the structure and magnet configuration can have a significant impact on performance. In this paper, the magnet configuration, flux barriers and bridges are investigated to try and improve the performance of a baseline biased-flux motor. The details of the structure and operating principles are explained, and structures are optimised for torque production in a fixed volume. The no-load and full-load operations of alternative variants are studied in terms of cogging torque, flux density, flux line, torque profiles and overload capability. Moreover, a complete comparison has been made between split-magnet and single-magnet topologies in an intermodular permanent magnet motor. The magnetic stresses on the PMs are studied to assess the demagnetisation risks. It has been explained how splitting the magnets and introducing flux barriers increase the torque density and flux bridges decrease the demagnetisation risk. To better analyse the PM demagnetisation, a thermal study is carried out, and the PMs' B-H curve is modified accordingly. A comparative study is also conducted with other stator-permanent magnet motors to better assess the demagnetisation behaviour of the proposed topologies.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70014\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

偏磁通电机是一种以非常规方式运行的电机,但与传统拓扑结构相比,它具有结构和性能上的优势。要在这种相对不常见的拓扑结构中实现合适的设计,需要确定各种因素对其性能的影响。即使结构和磁体配置的微小变化也会对性能产生重大影响。本文研究了磁体结构、磁通屏障和磁桥,试图提高基准偏磁电机的性能。详细的结构和工作原理进行了解释,并优化了结构的扭矩生产在一个固定的体积。从齿槽转矩、磁通密度、磁通线、转矩分布和过载能力等方面研究了备选变型的空载和满载运行情况。此外,还对一种互模永磁电机的分体和单体拓扑结构进行了完整的比较。研究了永磁材料的磁应力,以评估其退磁风险。它已经解释了如何分裂磁铁和引入磁通屏障增加转矩密度和磁通桥降低退磁风险。为了更好地分析永磁材料的消磁,进行了热研究,并对永磁材料的B-H曲线进行了相应的修正。还与其他定子永磁电机进行了比较研究,以更好地评估所提出的拓扑结构的消磁行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comprehensive Analysis of Alternative Magnet Configurations in a Biased-Flux Machine

Comprehensive Analysis of Alternative Magnet Configurations in a Biased-Flux Machine

Biased-flux motors are a type of electric machine that operate in an unconventional manner but can offer structural and performance advantages over more conventional topologies. Achieving a suitable design in this relatively uncommon topology requires identifying the effect of various factors on its performance. Even small changes in the structure and magnet configuration can have a significant impact on performance. In this paper, the magnet configuration, flux barriers and bridges are investigated to try and improve the performance of a baseline biased-flux motor. The details of the structure and operating principles are explained, and structures are optimised for torque production in a fixed volume. The no-load and full-load operations of alternative variants are studied in terms of cogging torque, flux density, flux line, torque profiles and overload capability. Moreover, a complete comparison has been made between split-magnet and single-magnet topologies in an intermodular permanent magnet motor. The magnetic stresses on the PMs are studied to assess the demagnetisation risks. It has been explained how splitting the magnets and introducing flux barriers increase the torque density and flux bridges decrease the demagnetisation risk. To better analyse the PM demagnetisation, a thermal study is carried out, and the PMs' B-H curve is modified accordingly. A comparative study is also conducted with other stator-permanent magnet motors to better assess the demagnetisation behaviour of the proposed topologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信