E-SDHGN:复杂电磁环境下的多功能雷达工作模式识别框架

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Minhong Sun, Hangxin Chen, Zhangyi Shao, Zhaoyang Qiu, Zhenyin Wen, Deguo Zeng
{"title":"E-SDHGN:复杂电磁环境下的多功能雷达工作模式识别框架","authors":"Minhong Sun,&nbsp;Hangxin Chen,&nbsp;Zhangyi Shao,&nbsp;Zhaoyang Qiu,&nbsp;Zhenyin Wen,&nbsp;Deguo Zeng","doi":"10.1049/rsn2.70025","DOIUrl":null,"url":null,"abstract":"<p>A multifunction radar (MFR) can operate in multiple modes and perform various tasks such as surveillance, detection, fire control, search and tracking. Recognising an MFR's operating mode is critical in electronic warfare and intelligence reconnaissance, aiding practical threat assessment and countermeasure tasks. However, current recognition methods face challenges such as overlapping parameters among working modes and suboptimal recognition accuracy under conditions with parameter errors, missing pulses and false pulses. Spurred by these concerns, this paper proposes an entropy-enhanced spatial-deformable hybrid multiscale group network (E-SDHGN) to recognise the operating mode of an MFR and address these challenges. E-SDHGN employs multidimensional entropy computations to construct robust features and integrates deformable convolution and positional encoding to enhance the model's ability to capture complex features. Additionally, it enhances feature extraction and fusion within the dynamic shared residual network (DSRN) module by integrating KAN modules and hybrid weight-sharing strategies. Additionally, an adaptive margin feature module based on attention mechanisms improves classification accuracy in overlapping parameter conditions. Experimental results demonstrate that E-SDHGN achieves superior recognition accuracy and robustness, even under challenging parameter errors, missing pulses and false pulses. This underscores its value for applications in complex electromagnetic environments.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70025","citationCount":"0","resultStr":"{\"title\":\"E-SDHGN: A Multifunction Radar Working Mode Recognition Framework in Complex Electromagnetic Environments\",\"authors\":\"Minhong Sun,&nbsp;Hangxin Chen,&nbsp;Zhangyi Shao,&nbsp;Zhaoyang Qiu,&nbsp;Zhenyin Wen,&nbsp;Deguo Zeng\",\"doi\":\"10.1049/rsn2.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multifunction radar (MFR) can operate in multiple modes and perform various tasks such as surveillance, detection, fire control, search and tracking. Recognising an MFR's operating mode is critical in electronic warfare and intelligence reconnaissance, aiding practical threat assessment and countermeasure tasks. However, current recognition methods face challenges such as overlapping parameters among working modes and suboptimal recognition accuracy under conditions with parameter errors, missing pulses and false pulses. Spurred by these concerns, this paper proposes an entropy-enhanced spatial-deformable hybrid multiscale group network (E-SDHGN) to recognise the operating mode of an MFR and address these challenges. E-SDHGN employs multidimensional entropy computations to construct robust features and integrates deformable convolution and positional encoding to enhance the model's ability to capture complex features. Additionally, it enhances feature extraction and fusion within the dynamic shared residual network (DSRN) module by integrating KAN modules and hybrid weight-sharing strategies. Additionally, an adaptive margin feature module based on attention mechanisms improves classification accuracy in overlapping parameter conditions. Experimental results demonstrate that E-SDHGN achieves superior recognition accuracy and robustness, even under challenging parameter errors, missing pulses and false pulses. This underscores its value for applications in complex electromagnetic environments.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70025\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70025","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多功能雷达(MFR)可以在多种模式下工作,并执行各种任务,如监视、探测、火控、搜索和跟踪。识别MFR的工作模式在电子战和情报侦察中至关重要,有助于实际威胁评估和对抗任务。然而,现有的识别方法在存在参数误差、缺失脉冲和假脉冲的情况下,存在工作模式间参数重叠以及识别精度不理想等问题。在这些问题的刺激下,本文提出了一种熵增强的空间变形混合多尺度群网络(E-SDHGN)来识别MFR的运行模式并解决这些挑战。E-SDHGN采用多维熵计算构建鲁棒特征,并结合可变形卷积和位置编码增强模型捕捉复杂特征的能力。此外,通过集成KAN模块和混合权值共享策略,增强动态共享残差网络(DSRN)模块的特征提取和融合。此外,基于注意机制的自适应边缘特征模块提高了参数重叠条件下的分类精度。实验结果表明,即使在具有挑战性的参数误差、缺失脉冲和假脉冲情况下,E-SDHGN也能取得较好的识别精度和鲁棒性。这强调了它在复杂电磁环境中的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

E-SDHGN: A Multifunction Radar Working Mode Recognition Framework in Complex Electromagnetic Environments

E-SDHGN: A Multifunction Radar Working Mode Recognition Framework in Complex Electromagnetic Environments

A multifunction radar (MFR) can operate in multiple modes and perform various tasks such as surveillance, detection, fire control, search and tracking. Recognising an MFR's operating mode is critical in electronic warfare and intelligence reconnaissance, aiding practical threat assessment and countermeasure tasks. However, current recognition methods face challenges such as overlapping parameters among working modes and suboptimal recognition accuracy under conditions with parameter errors, missing pulses and false pulses. Spurred by these concerns, this paper proposes an entropy-enhanced spatial-deformable hybrid multiscale group network (E-SDHGN) to recognise the operating mode of an MFR and address these challenges. E-SDHGN employs multidimensional entropy computations to construct robust features and integrates deformable convolution and positional encoding to enhance the model's ability to capture complex features. Additionally, it enhances feature extraction and fusion within the dynamic shared residual network (DSRN) module by integrating KAN modules and hybrid weight-sharing strategies. Additionally, an adaptive margin feature module based on attention mechanisms improves classification accuracy in overlapping parameter conditions. Experimental results demonstrate that E-SDHGN achieves superior recognition accuracy and robustness, even under challenging parameter errors, missing pulses and false pulses. This underscores its value for applications in complex electromagnetic environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信