Giuseppina Lopardo, Fabio Bertiglia, Giuseppe Braccialarghe, Michael Florio, Ferruccio Girard, Domenico Giraudi, Federico Santoro
{"title":"微型镓相变电池的过冷效应","authors":"Giuseppina Lopardo, Fabio Bertiglia, Giuseppe Braccialarghe, Michael Florio, Ferruccio Girard, Domenico Giraudi, Federico Santoro","doi":"10.1002/adem.202402763","DOIUrl":null,"url":null,"abstract":"<p>Miniature gallium fixed-point cells are widely used as temperature standards and, because of their near-ambient transition temperature (29.7646 °C), are used in a variety of applications for the accurate in situ calibration of thermometers traceable to international system of units. A peculiarity of gallium, compared to other metal fixed-points, is its high degree of supercooling which can limit its possible applications. However, in literature, different authors observed the suppression of supercooling in case of small gallium cells. The reason for this is not completely clear. In this article, the supercooling effect was investigated in the specific case of a miniature gallium cells designed for space applications. The results show that the degree of supercooling is function of the thermal history of the cell. As the temperature of the metal, in the liquid state, increased, a linear dependence between the overheating of the sample and the supercooling effect was observed. This relationship is particularly important when the cell must be used to perform subsequent calibration cycles. An understanding of the factors that govern the supercooling, as proposed in this study, could help to develop ways to control it, in the design of calibration systems, and procedures to be used in different applications.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"27 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402763","citationCount":"0","resultStr":"{\"title\":\"Supercooling Effect in Miniature Gallium Phase Transition Cell\",\"authors\":\"Giuseppina Lopardo, Fabio Bertiglia, Giuseppe Braccialarghe, Michael Florio, Ferruccio Girard, Domenico Giraudi, Federico Santoro\",\"doi\":\"10.1002/adem.202402763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Miniature gallium fixed-point cells are widely used as temperature standards and, because of their near-ambient transition temperature (29.7646 °C), are used in a variety of applications for the accurate in situ calibration of thermometers traceable to international system of units. A peculiarity of gallium, compared to other metal fixed-points, is its high degree of supercooling which can limit its possible applications. However, in literature, different authors observed the suppression of supercooling in case of small gallium cells. The reason for this is not completely clear. In this article, the supercooling effect was investigated in the specific case of a miniature gallium cells designed for space applications. The results show that the degree of supercooling is function of the thermal history of the cell. As the temperature of the metal, in the liquid state, increased, a linear dependence between the overheating of the sample and the supercooling effect was observed. This relationship is particularly important when the cell must be used to perform subsequent calibration cycles. An understanding of the factors that govern the supercooling, as proposed in this study, could help to develop ways to control it, in the design of calibration systems, and procedures to be used in different applications.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"27 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202402763\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402763\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402763","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Supercooling Effect in Miniature Gallium Phase Transition Cell
Miniature gallium fixed-point cells are widely used as temperature standards and, because of their near-ambient transition temperature (29.7646 °C), are used in a variety of applications for the accurate in situ calibration of thermometers traceable to international system of units. A peculiarity of gallium, compared to other metal fixed-points, is its high degree of supercooling which can limit its possible applications. However, in literature, different authors observed the suppression of supercooling in case of small gallium cells. The reason for this is not completely clear. In this article, the supercooling effect was investigated in the specific case of a miniature gallium cells designed for space applications. The results show that the degree of supercooling is function of the thermal history of the cell. As the temperature of the metal, in the liquid state, increased, a linear dependence between the overheating of the sample and the supercooling effect was observed. This relationship is particularly important when the cell must be used to perform subsequent calibration cycles. An understanding of the factors that govern the supercooling, as proposed in this study, could help to develop ways to control it, in the design of calibration systems, and procedures to be used in different applications.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.