{"title":"快速旋转对流中粘性长度尺度与惯性长度尺度的交叉","authors":"C. Guervilly, E. Dormy","doi":"10.1029/2024GL111593","DOIUrl":null,"url":null,"abstract":"<p>Convection is the main heat transport mechanism in the Earth's liquid core and is thought to power the dynamo that generates the geomagnetic field. Core convection is strongly constrained by rotation while being turbulent. Given the difficulty in modeling these conditions, some key properties of core convection are still debated, including the dominant energy-carrying lengthscale. Different regimes of rapidly rotating, unmagnetized, turbulent convection exist depending on the importance of viscous and inertial forces in the dynamics, and hence different theoretical predictions for the dominant flow lengthscale have been proposed. Here we study the transition from viscously dominated to inertia-dominated regimes using numerical simulations in spherical and planar geometries. We find that the cross-over occurs when the inertial lengthscale approximately equals the viscous lengthscale. This suggests that core convection in the absence of magnetic fields is dominated by the inertial scale, which is hundred times larger than the viscous scale.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111593","citationCount":"0","resultStr":"{\"title\":\"The Cross-Over From Viscous to Inertial Lengthscales in Rapidly-Rotating Convection\",\"authors\":\"C. Guervilly, E. Dormy\",\"doi\":\"10.1029/2024GL111593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convection is the main heat transport mechanism in the Earth's liquid core and is thought to power the dynamo that generates the geomagnetic field. Core convection is strongly constrained by rotation while being turbulent. Given the difficulty in modeling these conditions, some key properties of core convection are still debated, including the dominant energy-carrying lengthscale. Different regimes of rapidly rotating, unmagnetized, turbulent convection exist depending on the importance of viscous and inertial forces in the dynamics, and hence different theoretical predictions for the dominant flow lengthscale have been proposed. Here we study the transition from viscously dominated to inertia-dominated regimes using numerical simulations in spherical and planar geometries. We find that the cross-over occurs when the inertial lengthscale approximately equals the viscous lengthscale. This suggests that core convection in the absence of magnetic fields is dominated by the inertial scale, which is hundred times larger than the viscous scale.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111593\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111593\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111593","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The Cross-Over From Viscous to Inertial Lengthscales in Rapidly-Rotating Convection
Convection is the main heat transport mechanism in the Earth's liquid core and is thought to power the dynamo that generates the geomagnetic field. Core convection is strongly constrained by rotation while being turbulent. Given the difficulty in modeling these conditions, some key properties of core convection are still debated, including the dominant energy-carrying lengthscale. Different regimes of rapidly rotating, unmagnetized, turbulent convection exist depending on the importance of viscous and inertial forces in the dynamics, and hence different theoretical predictions for the dominant flow lengthscale have been proposed. Here we study the transition from viscously dominated to inertia-dominated regimes using numerical simulations in spherical and planar geometries. We find that the cross-over occurs when the inertial lengthscale approximately equals the viscous lengthscale. This suggests that core convection in the absence of magnetic fields is dominated by the inertial scale, which is hundred times larger than the viscous scale.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.