{"title":"Thermal Distribution in Fins of Different Geometries With Temperature and Wavelength Dependent Properties","authors":"Kanwalpreet Kaur, Surjan Singh","doi":"10.1002/htj.23280","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this research work, we developed a mathematical model of heat transfer for different profiles of fins. This paper investigates heat transfer dynamics in continuously moving fins (rectangular, trapezoidal and concave parabolic), focusing on temperature-dependent thermal conductivity, heat transfer coefficients, internal heat generation and emissivity that varies with temperature and wavelength. The different values of the heat transfer coefficient capture various types of convection, nucleate boiling, condensation, and radiation effects, while treating thermal conductivity as a linear function of temperature. This problem is converted into a dimensionless form, and we adopted the Legendre wavelet collocation method (LWCM) to get the solution of the fin problem for various profiles. An exact solution in specific cases shows congruence up to seven to eight decimal places with LWCM results. Moreover, our analysis explores the effect of numerous non-dimensional parameters such as thermal conductivity parameter <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>A</mi>\n </mrow>\n </mrow>\n </semantics></math>, Peclet number <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Pe</mi>\n </mrow>\n </mrow>\n </semantics></math>, surface emissivity parameter <i>B</i>, convention-conduction parameter <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>N</mi>\n \n <mi>cc</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, radiation-conduction parameter <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>N</mi>\n \n <mi>rc</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, internal heat generation <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Q</mi>\n </mrow>\n </mrow>\n </semantics></math>, <i>D</i> fin taper ratio on the temperature profile and fin efficiency were studied in detail. As <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>N</mi>\n \n <mi>cc</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>N</mi>\n \n <mi>rc</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, and <i>B</i>, <i>D</i> increases in magnitude, the temperature inside the fin decreases, while higher values of Peclet number (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>P</mi>\n \n <mi>e</mi>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>), <i>A</i>, <i>m</i>, and <i>Q</i> cause lower heat transfer rate inside the fin. The results provide significant insights into the complex interplay of thermal processes across different fin geometries, emphasizing the importance of these dependencies for accurate modeling and optimization in thermal management systems.</p></div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 3","pages":"2205-2217"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究工作中,我们建立了不同剖面翅片的传热数学模型。本文研究了连续移动翅片(矩形、梯形和凹抛物线形)中的传热动力学,重点关注随温度和波长变化的导热系数、传热系数、内部发热和发射率。不同的传热系数值可捕捉到各种类型的对流、成核沸腾、凝结和辐射效应,同时将导热系数视为温度的线性函数。我们将该问题转换为无量纲形式,并采用 Legendre 小波配位法(LWCM)求得各种剖面的翅片问题解。特定情况下的精确解与 LWCM 的结果一致,精确到小数点后七到八位。此外,我们的分析还探讨了许多非尺寸参数对温度曲线和鳍片效率的影响,如热导率参数 A、佩克莱特数 Pe、表面发射率参数 B、常规传导参数 N cc、辐射传导参数 N rc、内部发热量 Q、鳍片锥度比 D 等。随着 N cc、N rc 和 B、D 的增大,翅片内部的温度降低,而佩克莱特数 ( P e )、A、m 和 Q 值越高,翅片内部的传热率越低。这些结果提供了对不同翅片几何形状热过程复杂相互作用的重要见解,强调了这些依赖关系对热管理系统精确建模和优化的重要性。
Thermal Distribution in Fins of Different Geometries With Temperature and Wavelength Dependent Properties
In this research work, we developed a mathematical model of heat transfer for different profiles of fins. This paper investigates heat transfer dynamics in continuously moving fins (rectangular, trapezoidal and concave parabolic), focusing on temperature-dependent thermal conductivity, heat transfer coefficients, internal heat generation and emissivity that varies with temperature and wavelength. The different values of the heat transfer coefficient capture various types of convection, nucleate boiling, condensation, and radiation effects, while treating thermal conductivity as a linear function of temperature. This problem is converted into a dimensionless form, and we adopted the Legendre wavelet collocation method (LWCM) to get the solution of the fin problem for various profiles. An exact solution in specific cases shows congruence up to seven to eight decimal places with LWCM results. Moreover, our analysis explores the effect of numerous non-dimensional parameters such as thermal conductivity parameter , Peclet number , surface emissivity parameter B, convention-conduction parameter , radiation-conduction parameter , internal heat generation , D fin taper ratio on the temperature profile and fin efficiency were studied in detail. As , , and B, D increases in magnitude, the temperature inside the fin decreases, while higher values of Peclet number (), A, m, and Q cause lower heat transfer rate inside the fin. The results provide significant insights into the complex interplay of thermal processes across different fin geometries, emphasizing the importance of these dependencies for accurate modeling and optimization in thermal management systems.