Amy D. Holt, Riley Barton, Sasha Wagner, Amy M. McKenna, Jason Fellman, Eran Hood, Tom I. Battin, Hannes Peter, Vanishing Glaciers Field Team, Robert G. M. Spencer
{"title":"从冰川输出的各种来源的广泛黑碳沉积","authors":"Amy D. Holt, Riley Barton, Sasha Wagner, Amy M. McKenna, Jason Fellman, Eran Hood, Tom I. Battin, Hannes Peter, Vanishing Glaciers Field Team, Robert G. M. Spencer","doi":"10.1029/2024GB008359","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric deposition delivers carbon to glacier surfaces, including from fossil fuel and biomass combustion. Nonetheless, spatial variation in the sources of organic and black carbon deposited on glaciers is poorly understood, along with their role in driving glacier outflow dissolved organic matter (DOM) composition and fate. Here, we used bulk and compound-specific carbon isotopic analyses to constrain the sources of dissolved organic carbon (DOC) and dissolved black carbon (DBC) in 10 glacier outflows across four regions. To understand the relationships between glacier DOM composition and sources of DOC and DBC, isotopic data were used in conjunction with ultrahigh resolution molecular-level analyses. Globally, a substantial yet variable component of DOC was sourced from anthropogenic aerosols (12%–91%; median 50%), influencing regional DOM composition (aliphatics 26.9%–58.4% relative abundance; RA). Relatively older radiocarbon ages (i.e., larger fossil-derived component) of glacier DOC were correlated with more <sup>13</sup>C depleted DOC and DBC signatures, where DOM had higher aromaticity, elevated RA of condensed aromatics, and a lower RA of aliphatic compounds. This study highlights that anthropogenic deposition is pervasive, but its extent varies spatially with ramifications for DOM composition, and thus reactivity and fate.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widespread Black Carbon Deposition of Varied Origin Exported From Glaciers\",\"authors\":\"Amy D. Holt, Riley Barton, Sasha Wagner, Amy M. McKenna, Jason Fellman, Eran Hood, Tom I. Battin, Hannes Peter, Vanishing Glaciers Field Team, Robert G. M. Spencer\",\"doi\":\"10.1029/2024GB008359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric deposition delivers carbon to glacier surfaces, including from fossil fuel and biomass combustion. Nonetheless, spatial variation in the sources of organic and black carbon deposited on glaciers is poorly understood, along with their role in driving glacier outflow dissolved organic matter (DOM) composition and fate. Here, we used bulk and compound-specific carbon isotopic analyses to constrain the sources of dissolved organic carbon (DOC) and dissolved black carbon (DBC) in 10 glacier outflows across four regions. To understand the relationships between glacier DOM composition and sources of DOC and DBC, isotopic data were used in conjunction with ultrahigh resolution molecular-level analyses. Globally, a substantial yet variable component of DOC was sourced from anthropogenic aerosols (12%–91%; median 50%), influencing regional DOM composition (aliphatics 26.9%–58.4% relative abundance; RA). Relatively older radiocarbon ages (i.e., larger fossil-derived component) of glacier DOC were correlated with more <sup>13</sup>C depleted DOC and DBC signatures, where DOM had higher aromaticity, elevated RA of condensed aromatics, and a lower RA of aliphatic compounds. This study highlights that anthropogenic deposition is pervasive, but its extent varies spatially with ramifications for DOM composition, and thus reactivity and fate.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008359\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008359","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Widespread Black Carbon Deposition of Varied Origin Exported From Glaciers
Atmospheric deposition delivers carbon to glacier surfaces, including from fossil fuel and biomass combustion. Nonetheless, spatial variation in the sources of organic and black carbon deposited on glaciers is poorly understood, along with their role in driving glacier outflow dissolved organic matter (DOM) composition and fate. Here, we used bulk and compound-specific carbon isotopic analyses to constrain the sources of dissolved organic carbon (DOC) and dissolved black carbon (DBC) in 10 glacier outflows across four regions. To understand the relationships between glacier DOM composition and sources of DOC and DBC, isotopic data were used in conjunction with ultrahigh resolution molecular-level analyses. Globally, a substantial yet variable component of DOC was sourced from anthropogenic aerosols (12%–91%; median 50%), influencing regional DOM composition (aliphatics 26.9%–58.4% relative abundance; RA). Relatively older radiocarbon ages (i.e., larger fossil-derived component) of glacier DOC were correlated with more 13C depleted DOC and DBC signatures, where DOM had higher aromaticity, elevated RA of condensed aromatics, and a lower RA of aliphatic compounds. This study highlights that anthropogenic deposition is pervasive, but its extent varies spatially with ramifications for DOM composition, and thus reactivity and fate.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.