Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Udugama Koralalage Don Muditha Akmal, Dengwei Hu, Pradeep Kumara Wijesekara Abeygunawardhana and Galhenage Asha Sewvandi
{"title":"用于太阳能收集的环保卤化铋硫系钙钛矿","authors":"Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Udugama Koralalage Don Muditha Akmal, Dengwei Hu, Pradeep Kumara Wijesekara Abeygunawardhana and Galhenage Asha Sewvandi","doi":"10.1039/D4SE01523A","DOIUrl":null,"url":null,"abstract":"<p >The quest to eliminate lead (Pb) content in perovskite photovoltaic materials has significantly shifted focus towards identifying viable Pb-free alternatives. This study provides a comprehensive theoretical investigation of CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S as Pb alternative candidates. Density Functional Theory (DFT) calculations and the solar cell capacitance simulator (SCAPS) were used. The DFT analysis reveals that both CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S possess indirect band gaps of 1.35 eV and 1.39 eV, respectively. CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se demonstrates a higher absorption coefficient, stronger absorption in the UV-visible regions, a broader absorption spectrum and better charge carrier mobilities compared to CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S. CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S based solar cells which show 24.06% and 21.85% power conversion efficiencies (PCEs), respectively. This study emphasizes the potential of CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se as a promising bismuth mixed halide chalcogenide compound for the development of sustainable perovskite solar cells. The findings provide a foundation for the guided design of novel bismuth chalcogenide compounds for optoelectronic applications and experimental studies.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 8","pages":" 2197-2206"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly bismuth halide chalcogenide perovskites for solar energy harvesting\",\"authors\":\"Jayawardane Thambugalage Sanjeewani Thakshila Jayawardane, Udugama Koralalage Don Muditha Akmal, Dengwei Hu, Pradeep Kumara Wijesekara Abeygunawardhana and Galhenage Asha Sewvandi\",\"doi\":\"10.1039/D4SE01523A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The quest to eliminate lead (Pb) content in perovskite photovoltaic materials has significantly shifted focus towards identifying viable Pb-free alternatives. This study provides a comprehensive theoretical investigation of CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S as Pb alternative candidates. Density Functional Theory (DFT) calculations and the solar cell capacitance simulator (SCAPS) were used. The DFT analysis reveals that both CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S possess indirect band gaps of 1.35 eV and 1.39 eV, respectively. CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se demonstrates a higher absorption coefficient, stronger absorption in the UV-visible regions, a broader absorption spectrum and better charge carrier mobilities compared to CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S. CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se and CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>S based solar cells which show 24.06% and 21.85% power conversion efficiencies (PCEs), respectively. This study emphasizes the potential of CH<small><sub>3</sub></small>NH<small><sub>3</sub></small>BiI<small><sub>2</sub></small>Se as a promising bismuth mixed halide chalcogenide compound for the development of sustainable perovskite solar cells. The findings provide a foundation for the guided design of novel bismuth chalcogenide compounds for optoelectronic applications and experimental studies.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 8\",\"pages\":\" 2197-2206\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01523a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01523a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Eco-friendly bismuth halide chalcogenide perovskites for solar energy harvesting
The quest to eliminate lead (Pb) content in perovskite photovoltaic materials has significantly shifted focus towards identifying viable Pb-free alternatives. This study provides a comprehensive theoretical investigation of CH3NH3BiI2Se and CH3NH3BiI2S as Pb alternative candidates. Density Functional Theory (DFT) calculations and the solar cell capacitance simulator (SCAPS) were used. The DFT analysis reveals that both CH3NH3BiI2Se and CH3NH3BiI2S possess indirect band gaps of 1.35 eV and 1.39 eV, respectively. CH3NH3BiI2Se demonstrates a higher absorption coefficient, stronger absorption in the UV-visible regions, a broader absorption spectrum and better charge carrier mobilities compared to CH3NH3BiI2S. CH3NH3BiI2Se and CH3NH3BiI2S based solar cells which show 24.06% and 21.85% power conversion efficiencies (PCEs), respectively. This study emphasizes the potential of CH3NH3BiI2Se as a promising bismuth mixed halide chalcogenide compound for the development of sustainable perovskite solar cells. The findings provide a foundation for the guided design of novel bismuth chalcogenide compounds for optoelectronic applications and experimental studies.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.