Sk Rafidul;Mobayode O. Akinsolu;Bo Liu;Chandrakanta Kumar;Debatosh Guha
{"title":"具有非凡极化纯度的机器学习辅助微带天线设计","authors":"Sk Rafidul;Mobayode O. Akinsolu;Bo Liu;Chandrakanta Kumar;Debatosh Guha","doi":"10.1109/LAWP.2024.3524249","DOIUrl":null,"url":null,"abstract":"A high degree of polarization purity for microstrip antennas has been successfully explored. This, to the best of our knowledge, is the first of its kind and claims a twofold novelty: a stepwise development of complex multiunit defected ground geometry (DGG) based on a thorough scientific analysis and use of a machine learning-assisted global antenna optimization method, particularly, the parallel surrogate model-assisted hybrid differential evolution for antenna synthesis (PSADEA) algorithm, which is often more than ten times faster than popular global optimization techniques, while obtaining superior results. They result in highly optimal solutions considering multiple performances, i.e., reduction in cross-polarization (XP) radiations simultaneously over orthogonal (H-) and diagonal (D-) planes maintaining the primary gain unaffected. The proposed DGG has been satisfactorily tested with different patches and arrays fabricated in C band. Typically, 7.5 dBi to 8.0 dBi peak gain has been ensured along with 13 dB to 18 dB improvement in XP level over entire radiation planes. A 4-element array on an identical DGG promises over 40 dB co-to-XP isolation over the entire azimuth planes.","PeriodicalId":51059,"journal":{"name":"IEEE Antennas and Wireless Propagation Letters","volume":"24 4","pages":"1008-1012"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Assisted Microstrip Antenna Design Featuring Extraordinary Polarization Purity\",\"authors\":\"Sk Rafidul;Mobayode O. Akinsolu;Bo Liu;Chandrakanta Kumar;Debatosh Guha\",\"doi\":\"10.1109/LAWP.2024.3524249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high degree of polarization purity for microstrip antennas has been successfully explored. This, to the best of our knowledge, is the first of its kind and claims a twofold novelty: a stepwise development of complex multiunit defected ground geometry (DGG) based on a thorough scientific analysis and use of a machine learning-assisted global antenna optimization method, particularly, the parallel surrogate model-assisted hybrid differential evolution for antenna synthesis (PSADEA) algorithm, which is often more than ten times faster than popular global optimization techniques, while obtaining superior results. They result in highly optimal solutions considering multiple performances, i.e., reduction in cross-polarization (XP) radiations simultaneously over orthogonal (H-) and diagonal (D-) planes maintaining the primary gain unaffected. The proposed DGG has been satisfactorily tested with different patches and arrays fabricated in C band. Typically, 7.5 dBi to 8.0 dBi peak gain has been ensured along with 13 dB to 18 dB improvement in XP level over entire radiation planes. A 4-element array on an identical DGG promises over 40 dB co-to-XP isolation over the entire azimuth planes.\",\"PeriodicalId\":51059,\"journal\":{\"name\":\"IEEE Antennas and Wireless Propagation Letters\",\"volume\":\"24 4\",\"pages\":\"1008-1012\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Antennas and Wireless Propagation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10818774/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Wireless Propagation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10818774/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A high degree of polarization purity for microstrip antennas has been successfully explored. This, to the best of our knowledge, is the first of its kind and claims a twofold novelty: a stepwise development of complex multiunit defected ground geometry (DGG) based on a thorough scientific analysis and use of a machine learning-assisted global antenna optimization method, particularly, the parallel surrogate model-assisted hybrid differential evolution for antenna synthesis (PSADEA) algorithm, which is often more than ten times faster than popular global optimization techniques, while obtaining superior results. They result in highly optimal solutions considering multiple performances, i.e., reduction in cross-polarization (XP) radiations simultaneously over orthogonal (H-) and diagonal (D-) planes maintaining the primary gain unaffected. The proposed DGG has been satisfactorily tested with different patches and arrays fabricated in C band. Typically, 7.5 dBi to 8.0 dBi peak gain has been ensured along with 13 dB to 18 dB improvement in XP level over entire radiation planes. A 4-element array on an identical DGG promises over 40 dB co-to-XP isolation over the entire azimuth planes.
期刊介绍:
IEEE Antennas and Wireless Propagation Letters (AWP Letters) is devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation. These are areas of competence for the IEEE Antennas and Propagation Society (AP-S). AWPL aims to be one of the "fastest" journals among IEEE publications. This means that for papers that are eventually accepted, it is intended that an author may expect his or her paper to appear in IEEE Xplore, on average, around two months after submission.