{"title":"带通孔的 K 波段铌酸锂 A3 兰姆波谐振器","authors":"Shu-Mao Wu;Hao Yan;Chen-Bei Hao;Zhen-Hui Qin;Si-Yuan Yu;Yan-Feng Chen","doi":"10.1109/JMEMS.2025.3540960","DOIUrl":null,"url":null,"abstract":"Addressing critical challenges in Lamb wave resonators, this paper presents the first validation of resonators incorporating through-holes. Using the A3 mode resonator based on a LiNbO3 single-crystal thin film and operating in the K band as a prominent example, we demonstrate the advantages of the through-hole design. In the absence of additional processing steps, and while maintaining device performance—including operating frequency, electromechanical coupling coefficient, and quality factor—without introducing extra spurious modes, this approach effectively reduces the ineffective suspension area of the piezoelectric LiNbO3 film, potentially enhancing mechanical and thermal stability. It also standardizes etching distances (and times) across various Lamb wave resonators on a single wafer, facilitating the development of Lamb wave filters. The versatility of the through-hole technique, with relaxed constraints on hole geometry and arrangement, further highlights its significance. Together with the other advantages, these features underscore the transformative potential of through-holes in advancing the practical implementation of Lamb wave resonators and filters. [2024-0155]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"164-173"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-Band LiNbO₃ A3 Lamb-Wave Resonators With Through-Holes\",\"authors\":\"Shu-Mao Wu;Hao Yan;Chen-Bei Hao;Zhen-Hui Qin;Si-Yuan Yu;Yan-Feng Chen\",\"doi\":\"10.1109/JMEMS.2025.3540960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing critical challenges in Lamb wave resonators, this paper presents the first validation of resonators incorporating through-holes. Using the A3 mode resonator based on a LiNbO3 single-crystal thin film and operating in the K band as a prominent example, we demonstrate the advantages of the through-hole design. In the absence of additional processing steps, and while maintaining device performance—including operating frequency, electromechanical coupling coefficient, and quality factor—without introducing extra spurious modes, this approach effectively reduces the ineffective suspension area of the piezoelectric LiNbO3 film, potentially enhancing mechanical and thermal stability. It also standardizes etching distances (and times) across various Lamb wave resonators on a single wafer, facilitating the development of Lamb wave filters. The versatility of the through-hole technique, with relaxed constraints on hole geometry and arrangement, further highlights its significance. Together with the other advantages, these features underscore the transformative potential of through-holes in advancing the practical implementation of Lamb wave resonators and filters. [2024-0155]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"34 2\",\"pages\":\"164-173\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891784/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10891784/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
K-Band LiNbO₃ A3 Lamb-Wave Resonators With Through-Holes
Addressing critical challenges in Lamb wave resonators, this paper presents the first validation of resonators incorporating through-holes. Using the A3 mode resonator based on a LiNbO3 single-crystal thin film and operating in the K band as a prominent example, we demonstrate the advantages of the through-hole design. In the absence of additional processing steps, and while maintaining device performance—including operating frequency, electromechanical coupling coefficient, and quality factor—without introducing extra spurious modes, this approach effectively reduces the ineffective suspension area of the piezoelectric LiNbO3 film, potentially enhancing mechanical and thermal stability. It also standardizes etching distances (and times) across various Lamb wave resonators on a single wafer, facilitating the development of Lamb wave filters. The versatility of the through-hole technique, with relaxed constraints on hole geometry and arrangement, further highlights its significance. Together with the other advantages, these features underscore the transformative potential of through-holes in advancing the practical implementation of Lamb wave resonators and filters. [2024-0155]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.