{"title":"用于脂质囊泡控制融合的高纵横比电极电融合装置","authors":"Tsutomu Okita;Mamiko Tsugane;Kosuke Kato;Keisuke Shinohara;Hiroaki Suzuki","doi":"10.1109/JMEMS.2025.3530466","DOIUrl":null,"url":null,"abstract":"Giant liposomes or giant vesicles have been used as dynamic bioreactors because of their ability to fuse with other vesicles to mix their contents. Among various principles, electrofusion is particularly useful because it is quick and does not require solution exchange. In conventional vesicle fusion methods, quantitative evaluation of fusion events has often been difficult because vesicles float and move due to the unexpected flow. In this study, we developed a microfluidic device equipped with microchambers for structural trapping and electrodes for vesicle fusion, in which the fusion phenomenon can be observed in definite locations. Specifically, we fabricated an electrofusion device that had conductive silicon electrodes and PDMS microchambers that held giant unilamellar vesicles (GUVs; diameter <inline-formula> <tex-math>$\\gt 6~\\mu $ </tex-math></inline-formula>m) in place. The fusion yield of GUV-GUV and GUV-small GUV (diameter <inline-formula> <tex-math>$\\lt 2~\\mu $ </tex-math></inline-formula>m) was examined by detecting the fluorescence marker that appeared upon the mixing of internal contents of two vesicle populations. This architecture can be used to realize parallel electrofusion assays for quantitatively analyzing biochemical reactions in the cell-mimetic environment. [2024-0166]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"34 2","pages":"174-183"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrofusion Device With High-Aspect-Ratio Electrodes for the Controlled Fusion of Lipid Vesicles\",\"authors\":\"Tsutomu Okita;Mamiko Tsugane;Kosuke Kato;Keisuke Shinohara;Hiroaki Suzuki\",\"doi\":\"10.1109/JMEMS.2025.3530466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Giant liposomes or giant vesicles have been used as dynamic bioreactors because of their ability to fuse with other vesicles to mix their contents. Among various principles, electrofusion is particularly useful because it is quick and does not require solution exchange. In conventional vesicle fusion methods, quantitative evaluation of fusion events has often been difficult because vesicles float and move due to the unexpected flow. In this study, we developed a microfluidic device equipped with microchambers for structural trapping and electrodes for vesicle fusion, in which the fusion phenomenon can be observed in definite locations. Specifically, we fabricated an electrofusion device that had conductive silicon electrodes and PDMS microchambers that held giant unilamellar vesicles (GUVs; diameter <inline-formula> <tex-math>$\\\\gt 6~\\\\mu $ </tex-math></inline-formula>m) in place. The fusion yield of GUV-GUV and GUV-small GUV (diameter <inline-formula> <tex-math>$\\\\lt 2~\\\\mu $ </tex-math></inline-formula>m) was examined by detecting the fluorescence marker that appeared upon the mixing of internal contents of two vesicle populations. This architecture can be used to realize parallel electrofusion assays for quantitatively analyzing biochemical reactions in the cell-mimetic environment. [2024-0166]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"34 2\",\"pages\":\"174-183\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10879451/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879451/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electrofusion Device With High-Aspect-Ratio Electrodes for the Controlled Fusion of Lipid Vesicles
Giant liposomes or giant vesicles have been used as dynamic bioreactors because of their ability to fuse with other vesicles to mix their contents. Among various principles, electrofusion is particularly useful because it is quick and does not require solution exchange. In conventional vesicle fusion methods, quantitative evaluation of fusion events has often been difficult because vesicles float and move due to the unexpected flow. In this study, we developed a microfluidic device equipped with microchambers for structural trapping and electrodes for vesicle fusion, in which the fusion phenomenon can be observed in definite locations. Specifically, we fabricated an electrofusion device that had conductive silicon electrodes and PDMS microchambers that held giant unilamellar vesicles (GUVs; diameter $\gt 6~\mu $ m) in place. The fusion yield of GUV-GUV and GUV-small GUV (diameter $\lt 2~\mu $ m) was examined by detecting the fluorescence marker that appeared upon the mixing of internal contents of two vesicle populations. This architecture can be used to realize parallel electrofusion assays for quantitatively analyzing biochemical reactions in the cell-mimetic environment. [2024-0166]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.