Junyan Han , Jiaxue Wang , Liyun Li , Xiaoqiang Wang , M. Hesham El Naggar , Xiuli Du
{"title":"近断层脉状地震动作用下斜坡场地的地震反应","authors":"Junyan Han , Jiaxue Wang , Liyun Li , Xiaoqiang Wang , M. Hesham El Naggar , Xiuli Du","doi":"10.1016/j.soildyn.2025.109424","DOIUrl":null,"url":null,"abstract":"<div><div>Sloping sites are highly vulnerable to strong ground motions, which can induce lateral spreading and, in extreme cases, flow failure. This study investigates the seismic behavior of sloping sites subjected to Near-fault pulse-like (NF-P) ground motions. A two-dimensional finite element model of a sloping site was developed, utilizing a multiple yield surface plasticity constitutive model, which was validated with centrifuge test data. The validated model was then employed to analyze the pore pressure ratio, acceleration response, peak shear strain, and lateral displacement of soil subjected to both NF-P and Near-fault non-pulse (NF-NP) ground motions. The results demonstrate that, at high intensity levels, NF-P ground motions induce more severe liquefaction in loose sand layers, exacerbating shear deformations, as evidenced by a 43.18 % increase in peak shear strain. Liquefied loose sand layers are less effective at mitigating the effects of NF-P ground motions, resulting in persistently high peak accelerations at the surface. Furthermore, sloping sites experience substantially greater lateral displacements under NF-P ground motions, with lateral spreading displacement increasing by 150 %. NF-P ground motions also cause significantly larger lateral and vertical displacements compared to NF-NP ground motions, with lateral displacements reaching 0.97 m, and the soil maximum settlement and uplift being 2.67 and 2.60 times greater, respectively.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"195 ","pages":"Article 109424"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic response of sloping sites subject to near-fault pulse-like ground motions\",\"authors\":\"Junyan Han , Jiaxue Wang , Liyun Li , Xiaoqiang Wang , M. Hesham El Naggar , Xiuli Du\",\"doi\":\"10.1016/j.soildyn.2025.109424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sloping sites are highly vulnerable to strong ground motions, which can induce lateral spreading and, in extreme cases, flow failure. This study investigates the seismic behavior of sloping sites subjected to Near-fault pulse-like (NF-P) ground motions. A two-dimensional finite element model of a sloping site was developed, utilizing a multiple yield surface plasticity constitutive model, which was validated with centrifuge test data. The validated model was then employed to analyze the pore pressure ratio, acceleration response, peak shear strain, and lateral displacement of soil subjected to both NF-P and Near-fault non-pulse (NF-NP) ground motions. The results demonstrate that, at high intensity levels, NF-P ground motions induce more severe liquefaction in loose sand layers, exacerbating shear deformations, as evidenced by a 43.18 % increase in peak shear strain. Liquefied loose sand layers are less effective at mitigating the effects of NF-P ground motions, resulting in persistently high peak accelerations at the surface. Furthermore, sloping sites experience substantially greater lateral displacements under NF-P ground motions, with lateral spreading displacement increasing by 150 %. NF-P ground motions also cause significantly larger lateral and vertical displacements compared to NF-NP ground motions, with lateral displacements reaching 0.97 m, and the soil maximum settlement and uplift being 2.67 and 2.60 times greater, respectively.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":\"195 \",\"pages\":\"Article 109424\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726125002179\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125002179","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Seismic response of sloping sites subject to near-fault pulse-like ground motions
Sloping sites are highly vulnerable to strong ground motions, which can induce lateral spreading and, in extreme cases, flow failure. This study investigates the seismic behavior of sloping sites subjected to Near-fault pulse-like (NF-P) ground motions. A two-dimensional finite element model of a sloping site was developed, utilizing a multiple yield surface plasticity constitutive model, which was validated with centrifuge test data. The validated model was then employed to analyze the pore pressure ratio, acceleration response, peak shear strain, and lateral displacement of soil subjected to both NF-P and Near-fault non-pulse (NF-NP) ground motions. The results demonstrate that, at high intensity levels, NF-P ground motions induce more severe liquefaction in loose sand layers, exacerbating shear deformations, as evidenced by a 43.18 % increase in peak shear strain. Liquefied loose sand layers are less effective at mitigating the effects of NF-P ground motions, resulting in persistently high peak accelerations at the surface. Furthermore, sloping sites experience substantially greater lateral displacements under NF-P ground motions, with lateral spreading displacement increasing by 150 %. NF-P ground motions also cause significantly larger lateral and vertical displacements compared to NF-NP ground motions, with lateral displacements reaching 0.97 m, and the soil maximum settlement and uplift being 2.67 and 2.60 times greater, respectively.
期刊介绍:
The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering.
Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.