{"title":"求解浅水方程组的无网格几何守恒加权最小二乘法","authors":"D. Satyaprasad , Soumendra Nath Kuiry , S. Sundar","doi":"10.1016/j.nonrwa.2025.104382","DOIUrl":null,"url":null,"abstract":"<div><div>The shallow water equations are numerically solved to simulate free surface flows. The convective flux terms in the shallow water equations need to be discretized using a Riemann solver to capture shocks and discontinuity for certain flow situations such as hydraulic jump, dam-break wave propagation or bore wave propagation, levee-breaching flows, etc. The approximate Riemann solver can capture shocks and is popular for studying open-channel flow dynamics with traditional mesh-based numerical methods. Though meshless methods can work on highly irregular geometry without involving the complex mesh generation procedure, the shock-capturing capability has not been implemented, especially for solving open-channel flows. Therefore, we have proposed a numerical method, namely, a shock-capturing meshless geometric conservation weighted least square (GC-WLS) method for solving the shallow water equations. The HLL (Harten–Lax–Van Leer) Riemann solver is implemented within the framework of the proposed meshless method. The spatial derivatives in the shallow water equations and the reconstruction of conservative variables for high-order accuracy are computed using the GC-WLS method. The proposed meshless method is tested for various numerically challenging open-channel flow problems, including analytical, laboratory experiments, and a large-scale physical model study on dam-break event.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104382"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A meshless geometric conservation weighted least square method for solving the shallow water equations\",\"authors\":\"D. Satyaprasad , Soumendra Nath Kuiry , S. Sundar\",\"doi\":\"10.1016/j.nonrwa.2025.104382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The shallow water equations are numerically solved to simulate free surface flows. The convective flux terms in the shallow water equations need to be discretized using a Riemann solver to capture shocks and discontinuity for certain flow situations such as hydraulic jump, dam-break wave propagation or bore wave propagation, levee-breaching flows, etc. The approximate Riemann solver can capture shocks and is popular for studying open-channel flow dynamics with traditional mesh-based numerical methods. Though meshless methods can work on highly irregular geometry without involving the complex mesh generation procedure, the shock-capturing capability has not been implemented, especially for solving open-channel flows. Therefore, we have proposed a numerical method, namely, a shock-capturing meshless geometric conservation weighted least square (GC-WLS) method for solving the shallow water equations. The HLL (Harten–Lax–Van Leer) Riemann solver is implemented within the framework of the proposed meshless method. The spatial derivatives in the shallow water equations and the reconstruction of conservative variables for high-order accuracy are computed using the GC-WLS method. The proposed meshless method is tested for various numerically challenging open-channel flow problems, including analytical, laboratory experiments, and a large-scale physical model study on dam-break event.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"85 \",\"pages\":\"Article 104382\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000689\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000689","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A meshless geometric conservation weighted least square method for solving the shallow water equations
The shallow water equations are numerically solved to simulate free surface flows. The convective flux terms in the shallow water equations need to be discretized using a Riemann solver to capture shocks and discontinuity for certain flow situations such as hydraulic jump, dam-break wave propagation or bore wave propagation, levee-breaching flows, etc. The approximate Riemann solver can capture shocks and is popular for studying open-channel flow dynamics with traditional mesh-based numerical methods. Though meshless methods can work on highly irregular geometry without involving the complex mesh generation procedure, the shock-capturing capability has not been implemented, especially for solving open-channel flows. Therefore, we have proposed a numerical method, namely, a shock-capturing meshless geometric conservation weighted least square (GC-WLS) method for solving the shallow water equations. The HLL (Harten–Lax–Van Leer) Riemann solver is implemented within the framework of the proposed meshless method. The spatial derivatives in the shallow water equations and the reconstruction of conservative variables for high-order accuracy are computed using the GC-WLS method. The proposed meshless method is tested for various numerically challenging open-channel flow problems, including analytical, laboratory experiments, and a large-scale physical model study on dam-break event.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.