Hariam Luqman Azeez , Adnan Ibrahim , Banw Omer Ahmed , Sharul Sham Dol , Ali H.A. Al-Waeli , Mahmoud Jaber
{"title":"新型光伏热系统的传热、能量和火用可持续性实验研究","authors":"Hariam Luqman Azeez , Adnan Ibrahim , Banw Omer Ahmed , Sharul Sham Dol , Ali H.A. Al-Waeli , Mahmoud Jaber","doi":"10.1016/j.csite.2025.106089","DOIUrl":null,"url":null,"abstract":"<div><div>The inefficiency of photovoltaic systems is a major obstacle. This research proposes an advanced collector design with dimpled and petal-patterned absorber tubes, coiled twisted tape, and nanofluids combined with nanophase changing materials. The adopted methodology consists of two phases, namely experimentally characterizing the heat transfer performance of the absorber tubes and conducting indoor experiments to evaluate the performance of the new photovoltaic thermal system. The experiments were performed under different flow rates of (0.01–0.085 kg/s), irradiances (400–1000 W/m<sup>2</sup>), and six different coolants. The initial experiment revealed an inverse relationship between the mass flow rate and the thermal performance of the absorber tubes. However, mass flow rates, solar irradiances up to 1000 W/m<sup>2</sup>, and using various coolants positively impacted the overall performance of the photovoltaic system. The absorber tube with dimples, petal arrays, coiled twisted tape, and nanofluid outperformed the smooth tube with water threefold. Additionally, the photovoltaic thermal system utilizing nanofluids and nanophase changing materials achieved electrical and thermal energy enhancements of 32 % and 21.2 %. The optimal design demonstrated environmental and economic viability, with total output surpassing input energy by 2.11 MWh and net CO<sub>2</sub> mitigation exceeding CO<sub>2</sub> emissions by 0.63 tons.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"70 ","pages":"Article 106089"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigations of heat transfer, energy, and exergy-based sustainability of a novel photovoltaic thermal system\",\"authors\":\"Hariam Luqman Azeez , Adnan Ibrahim , Banw Omer Ahmed , Sharul Sham Dol , Ali H.A. Al-Waeli , Mahmoud Jaber\",\"doi\":\"10.1016/j.csite.2025.106089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The inefficiency of photovoltaic systems is a major obstacle. This research proposes an advanced collector design with dimpled and petal-patterned absorber tubes, coiled twisted tape, and nanofluids combined with nanophase changing materials. The adopted methodology consists of two phases, namely experimentally characterizing the heat transfer performance of the absorber tubes and conducting indoor experiments to evaluate the performance of the new photovoltaic thermal system. The experiments were performed under different flow rates of (0.01–0.085 kg/s), irradiances (400–1000 W/m<sup>2</sup>), and six different coolants. The initial experiment revealed an inverse relationship between the mass flow rate and the thermal performance of the absorber tubes. However, mass flow rates, solar irradiances up to 1000 W/m<sup>2</sup>, and using various coolants positively impacted the overall performance of the photovoltaic system. The absorber tube with dimples, petal arrays, coiled twisted tape, and nanofluid outperformed the smooth tube with water threefold. Additionally, the photovoltaic thermal system utilizing nanofluids and nanophase changing materials achieved electrical and thermal energy enhancements of 32 % and 21.2 %. The optimal design demonstrated environmental and economic viability, with total output surpassing input energy by 2.11 MWh and net CO<sub>2</sub> mitigation exceeding CO<sub>2</sub> emissions by 0.63 tons.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"70 \",\"pages\":\"Article 106089\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25003491\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25003491","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Experimental investigations of heat transfer, energy, and exergy-based sustainability of a novel photovoltaic thermal system
The inefficiency of photovoltaic systems is a major obstacle. This research proposes an advanced collector design with dimpled and petal-patterned absorber tubes, coiled twisted tape, and nanofluids combined with nanophase changing materials. The adopted methodology consists of two phases, namely experimentally characterizing the heat transfer performance of the absorber tubes and conducting indoor experiments to evaluate the performance of the new photovoltaic thermal system. The experiments were performed under different flow rates of (0.01–0.085 kg/s), irradiances (400–1000 W/m2), and six different coolants. The initial experiment revealed an inverse relationship between the mass flow rate and the thermal performance of the absorber tubes. However, mass flow rates, solar irradiances up to 1000 W/m2, and using various coolants positively impacted the overall performance of the photovoltaic system. The absorber tube with dimples, petal arrays, coiled twisted tape, and nanofluid outperformed the smooth tube with water threefold. Additionally, the photovoltaic thermal system utilizing nanofluids and nanophase changing materials achieved electrical and thermal energy enhancements of 32 % and 21.2 %. The optimal design demonstrated environmental and economic viability, with total output surpassing input energy by 2.11 MWh and net CO2 mitigation exceeding CO2 emissions by 0.63 tons.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.