从混浊的悬浮液到清晰的数据:通过自动稀释实现粒子成像

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Daniel Biri , Ashwin Kumar Rajagopalan , Marco Mazzotti
{"title":"从混浊的悬浮液到清晰的数据:通过自动稀释实现粒子成像","authors":"Daniel Biri ,&nbsp;Ashwin Kumar Rajagopalan ,&nbsp;Marco Mazzotti","doi":"10.1016/j.powtec.2025.120965","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel dilution device designed for accurately and robustly diluting dense suspensions to enable real-time particle characterization using optical imaging systems. The device employs tangential flow filtration, allowing for continuous operation at high solid weight fractions typical in industrial crystallization processes. It demonstrates the ability to monitor suspensions continuously over 24 h and to quickly adapt to changing particle densities, whilst continuously enabling accurate measurements. This paper presents also a study of the impact of particle density on measurement accuracy; extensive testing confirms the reliability of the dilution device for distributions of various particle sizes and shapes. The dilution device successfully tracks the evolution of the particle size and shape distribution (PSSD) during cooling crystallization. The innovation presented here, overcomes the limitations of existing methods hindered by high particle densities, providing a significant advancement in real-time monitoring and characterization capabilities under realistic conditions. This technology holds potential for broad applications, including the validation of new crystallization theories and, thus enhanced development of efficient crystallization processes.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"458 ","pages":"Article 120965"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From cloudy suspensions to clear data: Particle imaging enabled by automated dilution\",\"authors\":\"Daniel Biri ,&nbsp;Ashwin Kumar Rajagopalan ,&nbsp;Marco Mazzotti\",\"doi\":\"10.1016/j.powtec.2025.120965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a novel dilution device designed for accurately and robustly diluting dense suspensions to enable real-time particle characterization using optical imaging systems. The device employs tangential flow filtration, allowing for continuous operation at high solid weight fractions typical in industrial crystallization processes. It demonstrates the ability to monitor suspensions continuously over 24 h and to quickly adapt to changing particle densities, whilst continuously enabling accurate measurements. This paper presents also a study of the impact of particle density on measurement accuracy; extensive testing confirms the reliability of the dilution device for distributions of various particle sizes and shapes. The dilution device successfully tracks the evolution of the particle size and shape distribution (PSSD) during cooling crystallization. The innovation presented here, overcomes the limitations of existing methods hindered by high particle densities, providing a significant advancement in real-time monitoring and characterization capabilities under realistic conditions. This technology holds potential for broad applications, including the validation of new crystallization theories and, thus enhanced development of efficient crystallization processes.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"458 \",\"pages\":\"Article 120965\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591025003602\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025003602","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的稀释装置,设计用于准确和稳健地稀释密集悬浮液,以实现使用光学成像系统进行实时颗粒表征。该设备采用切向流过滤,允许在工业结晶过程中典型的高固体重量分数连续操作。它展示了连续监测悬浮液超过24小时的能力,并快速适应不断变化的颗粒密度,同时连续实现精确测量。本文还研究了颗粒密度对测量精度的影响;广泛的测试证实了稀释装置对各种颗粒大小和形状分布的可靠性。该稀释装置成功地跟踪了冷却结晶过程中粒径和形状分布(PSSD)的演变。这里提出的创新,克服了高粒子密度阻碍现有方法的局限性,在现实条件下的实时监测和表征能力方面提供了重大进步。该技术具有广泛应用的潜力,包括验证新的结晶理论,从而加强了高效结晶工艺的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From cloudy suspensions to clear data: Particle imaging enabled by automated dilution

From cloudy suspensions to clear data: Particle imaging enabled by automated dilution
We present a novel dilution device designed for accurately and robustly diluting dense suspensions to enable real-time particle characterization using optical imaging systems. The device employs tangential flow filtration, allowing for continuous operation at high solid weight fractions typical in industrial crystallization processes. It demonstrates the ability to monitor suspensions continuously over 24 h and to quickly adapt to changing particle densities, whilst continuously enabling accurate measurements. This paper presents also a study of the impact of particle density on measurement accuracy; extensive testing confirms the reliability of the dilution device for distributions of various particle sizes and shapes. The dilution device successfully tracks the evolution of the particle size and shape distribution (PSSD) during cooling crystallization. The innovation presented here, overcomes the limitations of existing methods hindered by high particle densities, providing a significant advancement in real-time monitoring and characterization capabilities under realistic conditions. This technology holds potential for broad applications, including the validation of new crystallization theories and, thus enhanced development of efficient crystallization processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信