气候温度变化和过大风量对好氧生物反应器中溶解氧和微生物两个关键参数的影响

Q1 Social Sciences
Mpho Muloiwa , Julius Musyoka Ndambuki , Caliphs Zvinowanda , Innocentia Velaphi Sibiya
{"title":"气候温度变化和过大风量对好氧生物反应器中溶解氧和微生物两个关键参数的影响","authors":"Mpho Muloiwa ,&nbsp;Julius Musyoka Ndambuki ,&nbsp;Caliphs Zvinowanda ,&nbsp;Innocentia Velaphi Sibiya","doi":"10.1016/j.sajce.2025.04.001","DOIUrl":null,"url":null,"abstract":"<div><div>The biological treatment process, aerobic bioreactor is essential for biodegradation of nutrients using microbes. The survival of microbes relies on the availability of nutrients and dissolved oxygen (DO). The challenge is that oxygen gas does not dissolve easily in wastewater which motivates plant operators to apply excessive airflow rates to uphold oxygen in the aerobic bioreactor. In addition, the rising climate temperatures suppress DO, which threatens the survival of microbes, risking poor effluent discharge. Hence, the study analyzed the climate temperature changes and excessive airflow rate effect on microbes and DO simultaneously. Climate temperature changes and excessive airflow rate on microbes and DO were analyzed using linear regression, ANOVA, and coefficient of determination (R²). Findings disclosed that climate temperature changes produced R² (0.86) and negative linear regression (0.1076 mg/L) on DO while producing R² (0.59) and positive linear regression (0.168 mg/L) on microbes. Further findings disclosed that excessive airflow rates produced R² (0.84) and positive linear regression (0.0057 mg/L) on DO while producing R² (0.0003) and positive linear regression (0.001 mg/L) on microbes. Overall climate temperatures showed variations on microbes growth <em>(P -</em> <span><math><mrow><mn>8.7424</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>9</mn></msup></mrow></math></span> <em>&lt; 0.05)</em> and DO <em>(P -</em> <span><math><mrow><mn>6.301</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>29</mn></msup></mrow></math></span> <em>&lt; 0.05)</em> while excessive airflow rates showed no variations on microbes growth <em>(P - 0.7705</em> <em>&gt;</em> <em>0.05)</em> and DO <em>(P - 0.98512</em> <em>&gt;</em> <em>0.05)</em>. This suggests that climate temperature change will benefit microbes despite DO being suppressed while excessive airflow rates will not benefit microbes but enhance global warming due to emissions released by blowers/pumps.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"52 ","pages":"Pages 344-351"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Climate temperature changes and excessive airflow rate effect on two key parameters: Dissolved oxygen and microbes in the biological treatment process-aerobic bioreactor\",\"authors\":\"Mpho Muloiwa ,&nbsp;Julius Musyoka Ndambuki ,&nbsp;Caliphs Zvinowanda ,&nbsp;Innocentia Velaphi Sibiya\",\"doi\":\"10.1016/j.sajce.2025.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The biological treatment process, aerobic bioreactor is essential for biodegradation of nutrients using microbes. The survival of microbes relies on the availability of nutrients and dissolved oxygen (DO). The challenge is that oxygen gas does not dissolve easily in wastewater which motivates plant operators to apply excessive airflow rates to uphold oxygen in the aerobic bioreactor. In addition, the rising climate temperatures suppress DO, which threatens the survival of microbes, risking poor effluent discharge. Hence, the study analyzed the climate temperature changes and excessive airflow rate effect on microbes and DO simultaneously. Climate temperature changes and excessive airflow rate on microbes and DO were analyzed using linear regression, ANOVA, and coefficient of determination (R²). Findings disclosed that climate temperature changes produced R² (0.86) and negative linear regression (0.1076 mg/L) on DO while producing R² (0.59) and positive linear regression (0.168 mg/L) on microbes. Further findings disclosed that excessive airflow rates produced R² (0.84) and positive linear regression (0.0057 mg/L) on DO while producing R² (0.0003) and positive linear regression (0.001 mg/L) on microbes. Overall climate temperatures showed variations on microbes growth <em>(P -</em> <span><math><mrow><mn>8.7424</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>9</mn></msup></mrow></math></span> <em>&lt; 0.05)</em> and DO <em>(P -</em> <span><math><mrow><mn>6.301</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>29</mn></msup></mrow></math></span> <em>&lt; 0.05)</em> while excessive airflow rates showed no variations on microbes growth <em>(P - 0.7705</em> <em>&gt;</em> <em>0.05)</em> and DO <em>(P - 0.98512</em> <em>&gt;</em> <em>0.05)</em>. This suggests that climate temperature change will benefit microbes despite DO being suppressed while excessive airflow rates will not benefit microbes but enhance global warming due to emissions released by blowers/pumps.</div></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"52 \",\"pages\":\"Pages 344-351\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918525000356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918525000356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在生物处理过程中,好氧生物反应器是利用微生物对营养物进行生物降解所必需的。微生物的生存依赖于养分和溶解氧(DO)的可用性。挑战在于氧气在废水中不易溶解,这促使工厂操作员使用过大的气流速率来维持好氧生物反应器中的氧气。此外,不断上升的气候温度抑制了DO,这威胁到微生物的生存,可能导致污水排放不良。因此,本研究同时分析了气候温度变化和过大气流速率对微生物和DO的影响。采用线性回归、方差分析和决定系数(R²)分析气候温度变化和过度气流速率对微生物和DO的影响。结果表明,气候温度变化对DO产生了R²(0.86)和负线性回归(0.1076 mg/L),对微生物产生了R²(0.59)和正线性回归(0.168 mg/L)。进一步的研究结果表明,过大的气流率对DO产生R²(0.84)和正线性回归(0.0057 mg/L),而对微生物产生R²(0.0003)和正线性回归(0.001 mg/L)。总体气候温度对微生物生长有影响(P - 8.7424×109 <;0.05)和DO (P - 6.301×1029 <;0.05),而过大风量对微生物生长无显著影响(P - 0.7705 >;0.05)和DO (P - 0.98512 >;0.05)。这表明,尽管DO被抑制,但气候温度变化将有利于微生物,而过高的气流速率对微生物没有好处,而是由于鼓风机/泵释放的排放物而加剧了全球变暖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Climate temperature changes and excessive airflow rate effect on two key parameters: Dissolved oxygen and microbes in the biological treatment process-aerobic bioreactor
The biological treatment process, aerobic bioreactor is essential for biodegradation of nutrients using microbes. The survival of microbes relies on the availability of nutrients and dissolved oxygen (DO). The challenge is that oxygen gas does not dissolve easily in wastewater which motivates plant operators to apply excessive airflow rates to uphold oxygen in the aerobic bioreactor. In addition, the rising climate temperatures suppress DO, which threatens the survival of microbes, risking poor effluent discharge. Hence, the study analyzed the climate temperature changes and excessive airflow rate effect on microbes and DO simultaneously. Climate temperature changes and excessive airflow rate on microbes and DO were analyzed using linear regression, ANOVA, and coefficient of determination (R²). Findings disclosed that climate temperature changes produced R² (0.86) and negative linear regression (0.1076 mg/L) on DO while producing R² (0.59) and positive linear regression (0.168 mg/L) on microbes. Further findings disclosed that excessive airflow rates produced R² (0.84) and positive linear regression (0.0057 mg/L) on DO while producing R² (0.0003) and positive linear regression (0.001 mg/L) on microbes. Overall climate temperatures showed variations on microbes growth (P - 8.7424×109 < 0.05) and DO (P - 6.301×1029 < 0.05) while excessive airflow rates showed no variations on microbes growth (P - 0.7705 > 0.05) and DO (P - 0.98512 > 0.05). This suggests that climate temperature change will benefit microbes despite DO being suppressed while excessive airflow rates will not benefit microbes but enhance global warming due to emissions released by blowers/pumps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信