{"title":"转录组学和生理学分析揭示了低压静电场处理对枸杞贮藏期品质保持的影响及其潜在机制","authors":"Chenggui Yang, Ziang Zhou, Peirong Niu, Huili Zhang, Tongtong Niu, Yaoran Li, Huiyan Liu, Haitian Fang, Xiaobo Wei","doi":"10.1016/j.lwt.2025.117762","DOIUrl":null,"url":null,"abstract":"<div><div>The lack of effective quality maintenance technology is the main issue in the storage and preservation of goji berry. This study was conducted on the physiological indicators, metabolism of reactive oxygen species and mitochondrial redox processes of goji berry over a 15-day storage period to evaluate the impact of a low-voltage electrostatic field (LVEF) on their postharvest quality. Analysis of the transcriptome showed that LVEF resulted in higher expression of genes linked to reactive oxygen species and mitochondrial redox metabolism, while inhibiting the transcription of genes linked to cell wall metabolism and the ethylene biosynthesis and signaling pathway in goji berry. Moreover, LVEF prevented an increase in conductivity and the peroxidation of membrane lipids, while reducing the production rate of superoxide anion O<sub>2</sub><sup>•-</sup> (126.7 mmol min<sup>−1</sup> g<sup>−1</sup>) and H<sub>2</sub>O<sub>2</sub> (0.75 μmol g<sup>−1</sup>) levels. LVEF treatment significantly enhanced superoxide dismutase (SOD) (1.12-fold), catalase (CAT) (1.37-fold), peroxidase (POD) (1.58-fold), ascorbate peroxidase (APX) (1.02-fold), and glutathione reductase (GR) activity. In addition, LVEF increased the mitochondrial NAD(P)<sup>+</sup> levels, decreased the NAD(P)H levels, and increased the NAD(P)<sup>+</sup>/NAD(P)H ratio. The study suggested that the post-harvest storage quality of goji berries can be improved via LVEF, which achieves this by regulating ROS metabolism and mitochondrial redox metabolism.</div></div>","PeriodicalId":382,"journal":{"name":"LWT - Food Science and Technology","volume":"223 ","pages":"Article 117762"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic and physiological analysis reveal the effects and potential mechanisms of low-voltage electrostatic field treatment on the quality retention of goji berries during storage\",\"authors\":\"Chenggui Yang, Ziang Zhou, Peirong Niu, Huili Zhang, Tongtong Niu, Yaoran Li, Huiyan Liu, Haitian Fang, Xiaobo Wei\",\"doi\":\"10.1016/j.lwt.2025.117762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The lack of effective quality maintenance technology is the main issue in the storage and preservation of goji berry. This study was conducted on the physiological indicators, metabolism of reactive oxygen species and mitochondrial redox processes of goji berry over a 15-day storage period to evaluate the impact of a low-voltage electrostatic field (LVEF) on their postharvest quality. Analysis of the transcriptome showed that LVEF resulted in higher expression of genes linked to reactive oxygen species and mitochondrial redox metabolism, while inhibiting the transcription of genes linked to cell wall metabolism and the ethylene biosynthesis and signaling pathway in goji berry. Moreover, LVEF prevented an increase in conductivity and the peroxidation of membrane lipids, while reducing the production rate of superoxide anion O<sub>2</sub><sup>•-</sup> (126.7 mmol min<sup>−1</sup> g<sup>−1</sup>) and H<sub>2</sub>O<sub>2</sub> (0.75 μmol g<sup>−1</sup>) levels. LVEF treatment significantly enhanced superoxide dismutase (SOD) (1.12-fold), catalase (CAT) (1.37-fold), peroxidase (POD) (1.58-fold), ascorbate peroxidase (APX) (1.02-fold), and glutathione reductase (GR) activity. In addition, LVEF increased the mitochondrial NAD(P)<sup>+</sup> levels, decreased the NAD(P)H levels, and increased the NAD(P)<sup>+</sup>/NAD(P)H ratio. The study suggested that the post-harvest storage quality of goji berries can be improved via LVEF, which achieves this by regulating ROS metabolism and mitochondrial redox metabolism.</div></div>\",\"PeriodicalId\":382,\"journal\":{\"name\":\"LWT - Food Science and Technology\",\"volume\":\"223 \",\"pages\":\"Article 117762\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LWT - Food Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0023643825004463\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LWT - Food Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0023643825004463","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Transcriptomic and physiological analysis reveal the effects and potential mechanisms of low-voltage electrostatic field treatment on the quality retention of goji berries during storage
The lack of effective quality maintenance technology is the main issue in the storage and preservation of goji berry. This study was conducted on the physiological indicators, metabolism of reactive oxygen species and mitochondrial redox processes of goji berry over a 15-day storage period to evaluate the impact of a low-voltage electrostatic field (LVEF) on their postharvest quality. Analysis of the transcriptome showed that LVEF resulted in higher expression of genes linked to reactive oxygen species and mitochondrial redox metabolism, while inhibiting the transcription of genes linked to cell wall metabolism and the ethylene biosynthesis and signaling pathway in goji berry. Moreover, LVEF prevented an increase in conductivity and the peroxidation of membrane lipids, while reducing the production rate of superoxide anion O2•- (126.7 mmol min−1 g−1) and H2O2 (0.75 μmol g−1) levels. LVEF treatment significantly enhanced superoxide dismutase (SOD) (1.12-fold), catalase (CAT) (1.37-fold), peroxidase (POD) (1.58-fold), ascorbate peroxidase (APX) (1.02-fold), and glutathione reductase (GR) activity. In addition, LVEF increased the mitochondrial NAD(P)+ levels, decreased the NAD(P)H levels, and increased the NAD(P)+/NAD(P)H ratio. The study suggested that the post-harvest storage quality of goji berries can be improved via LVEF, which achieves this by regulating ROS metabolism and mitochondrial redox metabolism.
期刊介绍:
LWT - Food Science and Technology is an international journal that publishes innovative papers in the fields of food chemistry, biochemistry, microbiology, technology and nutrition. The work described should be innovative either in the approach or in the methods used. The significance of the results either for the science community or for the food industry must also be specified. Contributions written in English are welcomed in the form of review articles, short reviews, research papers, and research notes. Papers featuring animal trials and cell cultures are outside the scope of the journal and will not be considered for publication.