ζ(2m + 1)的Ramanujan恒等式的数值场模拟

IF 1.2 3区 数学 Q1 MATHEMATICS
Diksha Rani Bansal , Bibekananda Maji
{"title":"ζ(2m + 1)的Ramanujan恒等式的数值场模拟","authors":"Diksha Rani Bansal ,&nbsp;Bibekananda Maji","doi":"10.1016/j.jmaa.2025.129538","DOIUrl":null,"url":null,"abstract":"<div><div>Ramanujan's famous formula for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> has captivated the attention of numerous mathematicians over the years. Grosswald, in 1972, found a simple extension of Ramanujan's formula which in turn gives transformation formula for Eisenstein series over the full modular group. Recently, Banerjee, Gupta and Kumar found a number field analogue of Ramanujan's formula. In this paper, we present a new number field analogue of the Ramanujan-Grosswald formula for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> by obtaining a formula for Dedekind zeta function at odd arguments. We also obtain a number field analogue of an identity of Chandrasekharan and Narasimhan, which played a crucial role in proving our main identity. As an application, we generalize transformation formula for Eisenstein series <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> and Dedekind eta function <span><math><mi>η</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>. A new formula for the class number of a totally real number field is also obtained, which provides a connection with Kronecker's limit formula for the Dedekind zeta function.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 2","pages":"Article 129538"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A number field analogue of Ramanujan's identity for ζ(2m + 1)\",\"authors\":\"Diksha Rani Bansal ,&nbsp;Bibekananda Maji\",\"doi\":\"10.1016/j.jmaa.2025.129538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ramanujan's famous formula for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> has captivated the attention of numerous mathematicians over the years. Grosswald, in 1972, found a simple extension of Ramanujan's formula which in turn gives transformation formula for Eisenstein series over the full modular group. Recently, Banerjee, Gupta and Kumar found a number field analogue of Ramanujan's formula. In this paper, we present a new number field analogue of the Ramanujan-Grosswald formula for <span><math><mi>ζ</mi><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> by obtaining a formula for Dedekind zeta function at odd arguments. We also obtain a number field analogue of an identity of Chandrasekharan and Narasimhan, which played a crucial role in proving our main identity. As an application, we generalize transformation formula for Eisenstein series <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo></math></span> and Dedekind eta function <span><math><mi>η</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span>. A new formula for the class number of a totally real number field is also obtained, which provides a connection with Kronecker's limit formula for the Dedekind zeta function.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"550 2\",\"pages\":\"Article 129538\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003191\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003191","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

拉马努金著名的ζ(2m+1)公式多年来吸引了无数数学家的注意。Grosswald在1972年发现了Ramanujan公式的一个简单推广,从而给出了满模群上的Eisenstein级数的变换公式。最近,班纳吉、古普塔和库马尔发现了拉马努金公式的一个数场类比。本文给出了ζ(2m+1)的Ramanujan-Grosswald公式的一个新的数域类比,得到了ζ(2m+1)在奇参数处的Dedekind zeta函数公式。我们还得到了Chandrasekharan和Narasimhan的一个恒等式的数域模拟,这对证明我们的主恒等式起到了关键的作用。作为应用,我们推广了爱森斯坦级数G2k(z)和Dedekind函数η(z)的变换公式。得到了全实数域类数的一个新公式,并与Dedekind zeta函数的Kronecker极限公式建立了联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A number field analogue of Ramanujan's identity for ζ(2m + 1)
Ramanujan's famous formula for ζ(2m+1) has captivated the attention of numerous mathematicians over the years. Grosswald, in 1972, found a simple extension of Ramanujan's formula which in turn gives transformation formula for Eisenstein series over the full modular group. Recently, Banerjee, Gupta and Kumar found a number field analogue of Ramanujan's formula. In this paper, we present a new number field analogue of the Ramanujan-Grosswald formula for ζ(2m+1) by obtaining a formula for Dedekind zeta function at odd arguments. We also obtain a number field analogue of an identity of Chandrasekharan and Narasimhan, which played a crucial role in proving our main identity. As an application, we generalize transformation formula for Eisenstein series G2k(z) and Dedekind eta function η(z). A new formula for the class number of a totally real number field is also obtained, which provides a connection with Kronecker's limit formula for the Dedekind zeta function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信