Christian Marinus Huber , Nicole Dorsch , Helmut Ermert , Martin Vossiek , Ingrid Ullmann , Stefan Lyer
{"title":"基于线性复杂度的高阶延迟乘和波束形成器的生物医学被动空化映射","authors":"Christian Marinus Huber , Nicole Dorsch , Helmut Ermert , Martin Vossiek , Ingrid Ullmann , Stefan Lyer","doi":"10.1016/j.ultras.2025.107653","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasound-induced cavitation can be used in various biomedical therapies, including localized drug delivery, sonoporation, gene transfer, noninvasive sonothrombolysis, lithotripsy, and histotripsy. It can also enhance thermal ablation of tumors and facilitate trans-blood–brain-barrier treatments. Accurate monitoring of cavitation activity, including dose and location, is essential for the safe and effective application of these therapies. Passive cavitation mapping (PCM) is a key technique used to achieve this. However, conventional Delay and Sum (DAS) beamforming methods suffer from low resolution and high side-lobe levels in standard diagnostic ultrasound transducer, limiting their effectiveness or are computationally expensive, in the case of robust capon beamformer (RCB). To address these challenges, we propose a higher-order nonlinear Delay Multiply and Sum (DMAS) beamformer for improved passive cavitation mapping. Our approach utilizes a novel implementation with linear complexity, using a determinant from symmetrical polynomials. Simulation and experimental results demonstrate that the proposed method enhances both axial and lateral point spread function, resolution and increasing image quality, while exhibiting linear complexity. These improvements suggest that higher-order nonlinear beamforming is a promising advancement for more accurate and reliable cavitation monitoring in biomedical applications.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"153 ","pages":"Article 107653"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passive cavitation mapping for biomedical applications using higher order delay multiply and sum beamformer with linear complexity\",\"authors\":\"Christian Marinus Huber , Nicole Dorsch , Helmut Ermert , Martin Vossiek , Ingrid Ullmann , Stefan Lyer\",\"doi\":\"10.1016/j.ultras.2025.107653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrasound-induced cavitation can be used in various biomedical therapies, including localized drug delivery, sonoporation, gene transfer, noninvasive sonothrombolysis, lithotripsy, and histotripsy. It can also enhance thermal ablation of tumors and facilitate trans-blood–brain-barrier treatments. Accurate monitoring of cavitation activity, including dose and location, is essential for the safe and effective application of these therapies. Passive cavitation mapping (PCM) is a key technique used to achieve this. However, conventional Delay and Sum (DAS) beamforming methods suffer from low resolution and high side-lobe levels in standard diagnostic ultrasound transducer, limiting their effectiveness or are computationally expensive, in the case of robust capon beamformer (RCB). To address these challenges, we propose a higher-order nonlinear Delay Multiply and Sum (DMAS) beamformer for improved passive cavitation mapping. Our approach utilizes a novel implementation with linear complexity, using a determinant from symmetrical polynomials. Simulation and experimental results demonstrate that the proposed method enhances both axial and lateral point spread function, resolution and increasing image quality, while exhibiting linear complexity. These improvements suggest that higher-order nonlinear beamforming is a promising advancement for more accurate and reliable cavitation monitoring in biomedical applications.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"153 \",\"pages\":\"Article 107653\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X25000903\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000903","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Passive cavitation mapping for biomedical applications using higher order delay multiply and sum beamformer with linear complexity
Ultrasound-induced cavitation can be used in various biomedical therapies, including localized drug delivery, sonoporation, gene transfer, noninvasive sonothrombolysis, lithotripsy, and histotripsy. It can also enhance thermal ablation of tumors and facilitate trans-blood–brain-barrier treatments. Accurate monitoring of cavitation activity, including dose and location, is essential for the safe and effective application of these therapies. Passive cavitation mapping (PCM) is a key technique used to achieve this. However, conventional Delay and Sum (DAS) beamforming methods suffer from low resolution and high side-lobe levels in standard diagnostic ultrasound transducer, limiting their effectiveness or are computationally expensive, in the case of robust capon beamformer (RCB). To address these challenges, we propose a higher-order nonlinear Delay Multiply and Sum (DMAS) beamformer for improved passive cavitation mapping. Our approach utilizes a novel implementation with linear complexity, using a determinant from symmetrical polynomials. Simulation and experimental results demonstrate that the proposed method enhances both axial and lateral point spread function, resolution and increasing image quality, while exhibiting linear complexity. These improvements suggest that higher-order nonlinear beamforming is a promising advancement for more accurate and reliable cavitation monitoring in biomedical applications.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.