Guillermo Pérez-Villar , Francisco Gutiérrez , Giuseppe Bausilio , Diego Di Martire
{"title":"结合DInSAR和详细填图表征Cardona盐挤压过程中与底辟隆升、溶蚀降低、滑坡和陷落孔相关的地面位移特征","authors":"Guillermo Pérez-Villar , Francisco Gutiérrez , Giuseppe Bausilio , Diego Di Martire","doi":"10.1016/j.enggeo.2025.108068","DOIUrl":null,"url":null,"abstract":"<div><div>Salt diapirs, despite their inherent instability related to salt flow and dissolution (<em>terra infirma</em>), are often the focus of significant economic activities and sensitive facilities (e.g., salt mining, hydrocarbon production, geostorage). Nonetheless, Differential Interferometry SAR (DInSAR) studies on active diapirs are relatively scarce and frequently lack field-based characterization and independent validation of displacement rates. This work analyses the complex spatial and temporal patterns of ground displacement at the Cardona salt extrusion (NE Spain) combining detailed mapping and DInSAR LoS (Line of Sight) and vertical displacement data obtained by both coherence-based (i.e. Small BAseline Subset – SBAS) and Persistent Scatterers-like (PS) approaches. Overall, the salt extrusion is affected by steady diapiric uplift driven by differential loading and increasing towards the axis of the salt wall to vertical rates of 2–3.5 cm/yr. The obtained rates are in agreement with long-term rates previously calculated using radiocarbon dated uplifted terraces and are comparable with those obtained at vigorously rising salt extrusions in the Zagros Mountains. DInSAR data reveal other local ground displacement processes substantiated by field mapping and damage on human structures, including: (1) rapid dissolutional lowering at salt exposures, showing a tight temporal correlation with rainfall data (>5 cm/yr); (2) widespread dissolution-induced subsidence in valley-floor alluvium underlain by salt bedrock; (3) landsliding favored by diapiric rise and slope oversteepening; and (4) some large active sinkholes. This case study illustrates the practicality of integrating complementary DInSAR and field-based approaches for the comprehensive characterization of ground instability in salt diapirs, providing an objective basis for assessing the associated hazards.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"352 ","pages":"Article 108068"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating DInSAR and detailed mapping for characterizing ground displacement in the Cardona salt extrusion related to diapiric uplift, disolutional lowering, landsliding and sinkholes\",\"authors\":\"Guillermo Pérez-Villar , Francisco Gutiérrez , Giuseppe Bausilio , Diego Di Martire\",\"doi\":\"10.1016/j.enggeo.2025.108068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Salt diapirs, despite their inherent instability related to salt flow and dissolution (<em>terra infirma</em>), are often the focus of significant economic activities and sensitive facilities (e.g., salt mining, hydrocarbon production, geostorage). Nonetheless, Differential Interferometry SAR (DInSAR) studies on active diapirs are relatively scarce and frequently lack field-based characterization and independent validation of displacement rates. This work analyses the complex spatial and temporal patterns of ground displacement at the Cardona salt extrusion (NE Spain) combining detailed mapping and DInSAR LoS (Line of Sight) and vertical displacement data obtained by both coherence-based (i.e. Small BAseline Subset – SBAS) and Persistent Scatterers-like (PS) approaches. Overall, the salt extrusion is affected by steady diapiric uplift driven by differential loading and increasing towards the axis of the salt wall to vertical rates of 2–3.5 cm/yr. The obtained rates are in agreement with long-term rates previously calculated using radiocarbon dated uplifted terraces and are comparable with those obtained at vigorously rising salt extrusions in the Zagros Mountains. DInSAR data reveal other local ground displacement processes substantiated by field mapping and damage on human structures, including: (1) rapid dissolutional lowering at salt exposures, showing a tight temporal correlation with rainfall data (>5 cm/yr); (2) widespread dissolution-induced subsidence in valley-floor alluvium underlain by salt bedrock; (3) landsliding favored by diapiric rise and slope oversteepening; and (4) some large active sinkholes. This case study illustrates the practicality of integrating complementary DInSAR and field-based approaches for the comprehensive characterization of ground instability in salt diapirs, providing an objective basis for assessing the associated hazards.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"352 \",\"pages\":\"Article 108068\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795225001644\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225001644","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Integrating DInSAR and detailed mapping for characterizing ground displacement in the Cardona salt extrusion related to diapiric uplift, disolutional lowering, landsliding and sinkholes
Salt diapirs, despite their inherent instability related to salt flow and dissolution (terra infirma), are often the focus of significant economic activities and sensitive facilities (e.g., salt mining, hydrocarbon production, geostorage). Nonetheless, Differential Interferometry SAR (DInSAR) studies on active diapirs are relatively scarce and frequently lack field-based characterization and independent validation of displacement rates. This work analyses the complex spatial and temporal patterns of ground displacement at the Cardona salt extrusion (NE Spain) combining detailed mapping and DInSAR LoS (Line of Sight) and vertical displacement data obtained by both coherence-based (i.e. Small BAseline Subset – SBAS) and Persistent Scatterers-like (PS) approaches. Overall, the salt extrusion is affected by steady diapiric uplift driven by differential loading and increasing towards the axis of the salt wall to vertical rates of 2–3.5 cm/yr. The obtained rates are in agreement with long-term rates previously calculated using radiocarbon dated uplifted terraces and are comparable with those obtained at vigorously rising salt extrusions in the Zagros Mountains. DInSAR data reveal other local ground displacement processes substantiated by field mapping and damage on human structures, including: (1) rapid dissolutional lowering at salt exposures, showing a tight temporal correlation with rainfall data (>5 cm/yr); (2) widespread dissolution-induced subsidence in valley-floor alluvium underlain by salt bedrock; (3) landsliding favored by diapiric rise and slope oversteepening; and (4) some large active sinkholes. This case study illustrates the practicality of integrating complementary DInSAR and field-based approaches for the comprehensive characterization of ground instability in salt diapirs, providing an objective basis for assessing the associated hazards.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.