{"title":"各向同性超材料刚度超出Hashin-Shtrikman上界","authors":"Manish Kumar Singh , Chang Quan Lai","doi":"10.1016/j.jmps.2025.106130","DOIUrl":null,"url":null,"abstract":"<div><div>Since its introduction more than 60 years ago, the Hashin-Shtrikman upper bound has stood as the theoretical limit for the stiffness of isotropic composites and porous solids, acting as an important reference against which the moduli of heterogeneous structural materials are assessed. Here, we show through first-principles calculations, supported by finite element simulations, that the Hashin-Shtrikman upper bound can be exceeded by the <em>isotropic</em> elastic response of an anisotropic structure constructed from an anisotropic material. The material and structural anisotropies mutually reinforce each other to realize the overall isotropic response, without incurring the mass penalty faced by the hybridization of geometries with complementary anisotropies. 3 designs were investigated (plate BCC, plate FCC and plate SC) but only plate SC yielded a solution for the anisotropic properties of the material, which are remarkably similar to that of single crystal nickel and single crystal ferrite.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106130"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotropic metamaterial stiffness beyond Hashin-Shtrikman upper bound\",\"authors\":\"Manish Kumar Singh , Chang Quan Lai\",\"doi\":\"10.1016/j.jmps.2025.106130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since its introduction more than 60 years ago, the Hashin-Shtrikman upper bound has stood as the theoretical limit for the stiffness of isotropic composites and porous solids, acting as an important reference against which the moduli of heterogeneous structural materials are assessed. Here, we show through first-principles calculations, supported by finite element simulations, that the Hashin-Shtrikman upper bound can be exceeded by the <em>isotropic</em> elastic response of an anisotropic structure constructed from an anisotropic material. The material and structural anisotropies mutually reinforce each other to realize the overall isotropic response, without incurring the mass penalty faced by the hybridization of geometries with complementary anisotropies. 3 designs were investigated (plate BCC, plate FCC and plate SC) but only plate SC yielded a solution for the anisotropic properties of the material, which are remarkably similar to that of single crystal nickel and single crystal ferrite.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"200 \",\"pages\":\"Article 106130\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625001061\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Since its introduction more than 60 years ago, the Hashin-Shtrikman upper bound has stood as the theoretical limit for the stiffness of isotropic composites and porous solids, acting as an important reference against which the moduli of heterogeneous structural materials are assessed. Here, we show through first-principles calculations, supported by finite element simulations, that the Hashin-Shtrikman upper bound can be exceeded by the isotropic elastic response of an anisotropic structure constructed from an anisotropic material. The material and structural anisotropies mutually reinforce each other to realize the overall isotropic response, without incurring the mass penalty faced by the hybridization of geometries with complementary anisotropies. 3 designs were investigated (plate BCC, plate FCC and plate SC) but only plate SC yielded a solution for the anisotropic properties of the material, which are remarkably similar to that of single crystal nickel and single crystal ferrite.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.