用于光学图像处理的复调幅元器件

Chip Pub Date : 2025-02-14 DOI:10.1016/j.chip.2025.100132
Xincheng Jiang , Peicheng Lin , Yeang Zhang , Ting Xu , Yan-qing Lu , Jun-long Kou
{"title":"用于光学图像处理的复调幅元器件","authors":"Xincheng Jiang ,&nbsp;Peicheng Lin ,&nbsp;Yeang Zhang ,&nbsp;Ting Xu ,&nbsp;Yan-qing Lu ,&nbsp;Jun-long Kou","doi":"10.1016/j.chip.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, convolutional neural networks (CNNs) have become a powerful tool in areas such as object recognition, and natural language processing (NLP). However, considering that electronic convolutional operation always contains million-level parameters and complex calculation process, it consumes a large number of computing resources and time. To overcome these limitations, we propose a design of complex-amplitude-modulated meta-device which could perform various functions of image processing. In this work, we demonstrate the excellent performance of two-dimensional edge detection and Gaussian filtering. The proposed convolutional system serves as a new optical computing hardware, and provides a new approach for CNNs, biological microscopy and near-infrared imaging.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 2","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex-Amplitude-Modulated Meta-Device for Optical Image Processing\",\"authors\":\"Xincheng Jiang ,&nbsp;Peicheng Lin ,&nbsp;Yeang Zhang ,&nbsp;Ting Xu ,&nbsp;Yan-qing Lu ,&nbsp;Jun-long Kou\",\"doi\":\"10.1016/j.chip.2025.100132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nowadays, convolutional neural networks (CNNs) have become a powerful tool in areas such as object recognition, and natural language processing (NLP). However, considering that electronic convolutional operation always contains million-level parameters and complex calculation process, it consumes a large number of computing resources and time. To overcome these limitations, we propose a design of complex-amplitude-modulated meta-device which could perform various functions of image processing. In this work, we demonstrate the excellent performance of two-dimensional edge detection and Gaussian filtering. The proposed convolutional system serves as a new optical computing hardware, and provides a new approach for CNNs, biological microscopy and near-infrared imaging.</div></div>\",\"PeriodicalId\":100244,\"journal\":{\"name\":\"Chip\",\"volume\":\"4 2\",\"pages\":\"Article 100132\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chip\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2709472325000061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472325000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,卷积神经网络(cnn)已经成为物体识别和自然语言处理(NLP)等领域的强大工具。然而,由于电子卷积运算总是包含百万级参数和复杂的计算过程,消耗了大量的计算资源和时间。为了克服这些限制,我们提出了一种复杂调幅元器件的设计,可以执行各种图像处理功能。在这项工作中,我们证明了二维边缘检测和高斯滤波的优异性能。所提出的卷积系统作为一种新的光学计算硬件,为cnn、生物显微镜和近红外成像提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex-Amplitude-Modulated Meta-Device for Optical Image Processing
Nowadays, convolutional neural networks (CNNs) have become a powerful tool in areas such as object recognition, and natural language processing (NLP). However, considering that electronic convolutional operation always contains million-level parameters and complex calculation process, it consumes a large number of computing resources and time. To overcome these limitations, we propose a design of complex-amplitude-modulated meta-device which could perform various functions of image processing. In this work, we demonstrate the excellent performance of two-dimensional edge detection and Gaussian filtering. The proposed convolutional system serves as a new optical computing hardware, and provides a new approach for CNNs, biological microscopy and near-infrared imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信