具有奇异阿贝尔核的偏积分-微分方程的虚元逼近和BDF2时间离散格式

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Mostafa Abbaszadeh , Mahmoud A. Zaky , Mehdi Dehghan
{"title":"具有奇异阿贝尔核的偏积分-微分方程的虚元逼近和BDF2时间离散格式","authors":"Mostafa Abbaszadeh ,&nbsp;Mahmoud A. Zaky ,&nbsp;Mehdi Dehghan","doi":"10.1016/j.amc.2025.129451","DOIUrl":null,"url":null,"abstract":"<div><div>This work focuses on developing a virtual element framework for analyzing nonlinear partial integro-differential equations with singular Abel-type kernels. To address the singularity in the integral term, we propose two strategies: one based on linear interpolation over a uniform temporal mesh and another employing a graded mesh. Notably, while the uniform mesh fails to retain second-order temporal accuracy, the graded mesh successfully achieves it. For spatial discretization, we adopt the virtual element method and derive rigorous error estimates for the semi-discrete scheme. Nonlinear terms are approximated via a second-order temporal discretization. Following this, we establish a fully-discrete scheme. We rigorously establish the unconditional stability and convergence rates of the proposed method in separate theorems. Finally, we validate the theoretical results through numerical experiments on various domains.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"501 ","pages":"Article 129451"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual element approximation and BDF2 time-discrete scheme for a partial integro-differential equation with a singular Abel's kernel\",\"authors\":\"Mostafa Abbaszadeh ,&nbsp;Mahmoud A. Zaky ,&nbsp;Mehdi Dehghan\",\"doi\":\"10.1016/j.amc.2025.129451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work focuses on developing a virtual element framework for analyzing nonlinear partial integro-differential equations with singular Abel-type kernels. To address the singularity in the integral term, we propose two strategies: one based on linear interpolation over a uniform temporal mesh and another employing a graded mesh. Notably, while the uniform mesh fails to retain second-order temporal accuracy, the graded mesh successfully achieves it. For spatial discretization, we adopt the virtual element method and derive rigorous error estimates for the semi-discrete scheme. Nonlinear terms are approximated via a second-order temporal discretization. Following this, we establish a fully-discrete scheme. We rigorously establish the unconditional stability and convergence rates of the proposed method in separate theorems. Finally, we validate the theoretical results through numerical experiments on various domains.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"501 \",\"pages\":\"Article 129451\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009630032500178X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500178X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的工作重点是开发一个虚拟元框架,用于分析具有奇异abel型核的非线性偏积分-微分方程。为了解决积分项中的奇异性,我们提出了两种策略:一种是基于均匀时间网格的线性插值,另一种是采用梯度网格。值得注意的是,虽然均匀网格不能保持二阶时间精度,但梯度网格成功地做到了这一点。对于空间离散化,我们采用虚元法,推导出半离散格式的严格误差估计。非线性项通过二阶时间离散逼近。在此基础上,我们建立了一个完全离散的方案。我们用不同的定理严格地证明了所提方法的无条件稳定性和收敛速度。最后,通过不同领域的数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual element approximation and BDF2 time-discrete scheme for a partial integro-differential equation with a singular Abel's kernel
This work focuses on developing a virtual element framework for analyzing nonlinear partial integro-differential equations with singular Abel-type kernels. To address the singularity in the integral term, we propose two strategies: one based on linear interpolation over a uniform temporal mesh and another employing a graded mesh. Notably, while the uniform mesh fails to retain second-order temporal accuracy, the graded mesh successfully achieves it. For spatial discretization, we adopt the virtual element method and derive rigorous error estimates for the semi-discrete scheme. Nonlinear terms are approximated via a second-order temporal discretization. Following this, we establish a fully-discrete scheme. We rigorously establish the unconditional stability and convergence rates of the proposed method in separate theorems. Finally, we validate the theoretical results through numerical experiments on various domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信