Jakub J. Pypkowski, Adam M. Sykulski, James S. Martin
{"title":"空间点模式的各向同性测试:错误规范下的非参数与参数复制","authors":"Jakub J. Pypkowski, Adam M. Sykulski, James S. Martin","doi":"10.1016/j.spasta.2025.100898","DOIUrl":null,"url":null,"abstract":"<div><div>Several hypothesis testing methods have been proposed to validate the assumption of isotropy in spatial point patterns. A majority of these methods are characterised by an unknown distribution of the test statistic under the null hypothesis of isotropy. Parametric approaches to approximating the distribution involve simulation of patterns from a user-specified isotropic model. Alternatively, nonparametric replicates of the test statistic under isotropy can be used to waive the need for specifying a model. In this paper, we first present a general framework which allows for the integration of a selected nonparametric replication method into isotropy testing. We then conduct a large simulation study comprising application-like scenarios to assess the performance of tests with different parametric and nonparametric replication methods. In particular, we explore distortions in test size and power caused by model misspecification, and demonstrate the advantages of nonparametric replication in such scenarios.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100898"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotropy testing in spatial point patterns: nonparametric versus parametric replication under misspecification\",\"authors\":\"Jakub J. Pypkowski, Adam M. Sykulski, James S. Martin\",\"doi\":\"10.1016/j.spasta.2025.100898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Several hypothesis testing methods have been proposed to validate the assumption of isotropy in spatial point patterns. A majority of these methods are characterised by an unknown distribution of the test statistic under the null hypothesis of isotropy. Parametric approaches to approximating the distribution involve simulation of patterns from a user-specified isotropic model. Alternatively, nonparametric replicates of the test statistic under isotropy can be used to waive the need for specifying a model. In this paper, we first present a general framework which allows for the integration of a selected nonparametric replication method into isotropy testing. We then conduct a large simulation study comprising application-like scenarios to assess the performance of tests with different parametric and nonparametric replication methods. In particular, we explore distortions in test size and power caused by model misspecification, and demonstrate the advantages of nonparametric replication in such scenarios.</div></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":\"67 \",\"pages\":\"Article 100898\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221167532500020X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221167532500020X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Isotropy testing in spatial point patterns: nonparametric versus parametric replication under misspecification
Several hypothesis testing methods have been proposed to validate the assumption of isotropy in spatial point patterns. A majority of these methods are characterised by an unknown distribution of the test statistic under the null hypothesis of isotropy. Parametric approaches to approximating the distribution involve simulation of patterns from a user-specified isotropic model. Alternatively, nonparametric replicates of the test statistic under isotropy can be used to waive the need for specifying a model. In this paper, we first present a general framework which allows for the integration of a selected nonparametric replication method into isotropy testing. We then conduct a large simulation study comprising application-like scenarios to assess the performance of tests with different parametric and nonparametric replication methods. In particular, we explore distortions in test size and power caused by model misspecification, and demonstrate the advantages of nonparametric replication in such scenarios.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.